**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Raptor Codes on Binary Memoryless Symmetric Channels

Abstract

In this paper, we will investigate the performance of Raptor codes on arbitrary binary input memoryless symmetric channels (BIMSCs). In doing so, we generalize some of the results that were proved before for the erasure channel. We will generalize the stability condition to the class of Raptor codes. This generalization gives a lower bound on the fraction of output nodes of degree 2 of a Raptor code if the error probability of the belief- propagation decoder converges to zero. Using information-theoretic arguments, we will show that if a sequence of output degree distributions is to achieve the capacity of the underlying channel, then the fraction of nodes of degree 2 in these degree distributions has to converge to a certain quantity depending on the channel. For the class of erasure channels this quantity is independent of the erasure probability of the channel, but for many other classes of BIMSCs, this fraction depends on the particular channel chosen. This result has implications on the "universality" of Raptor codes for classes other than the class of erasure channels, in a sense that will be made more precise in the paper. We will also investigate the performance of specific Raptor codes which are optimized using a more exact version of the Gaussian approximation technique.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (47)

Related concepts (32)

Related MOOCs (2)

Tornado code

In coding theory, Tornado codes are a class of erasure codes that support error correction. Tornado codes require a constant C more redundant blocks than the more data-efficient Reed–Solomon erasure codes, but are much faster to generate and can fix erasures faster. Software-based implementations of tornado codes are about 100 times faster on small lengths and about 10,000 times faster on larger lengths than Reed–Solomon erasure codes. Since the introduction of Tornado codes, many other similar erasure codes have emerged, most notably Online codes, LT codes and Raptor codes.

Error correction code

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.

Binary erasure channel

In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability receives a message that the bit was not received ("erased") . A binary erasure channel with erasure probability is a channel with binary input, ternary output, and probability of erasure . That is, let be the transmitted random variable with alphabet .

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

,

An important class of modern channel codes is the capacity-achieving sequences of low-density parity-check block codes. Such sequences are usually designed for the binary erasure channel and are decoded by iterative message-passing algorithms. In this pape ...

We consider discrete message passing (MP) decoding of low-density parity check (LDPC) codes based on information-optimal symmetric look-up table (LUT). A link between discrete message labels and the associated log-likelihood ratio values (defined in terms ...