Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Root-finding algorithmsIn mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
Shor's algorithmShor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (that is, non-quantum) algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future.
Academic degreeAn academic degree is a qualification awarded to a student upon successful completion of a course of study in higher education, usually at a college or university. These institutions often offer degrees at various levels, usually divided into undergraduate and postgraduate degrees. The most common undergraduate degree is the bachelor's degree, although some educational systems offer lower level undergraduate degrees such as associate and foundation degrees. Common postgraduate degrees include master's degrees and doctorates.
Integer factorizationIn number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor). When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist.
Legendre symbolIn number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0. The Legendre symbol was introduced by Adrien-Marie Legendre in 1798 in the course of his attempts at proving the law of quadratic reciprocity. Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order.
Associate degreeAn associate degree or associate's degree is an undergraduate degree awarded after a course of post-secondary study lasting two to three years. It is a level of academic qualification above a high school diploma and below a bachelor's degree. The first associate degrees were awarded in the UK (where they are no longer awarded) in 1873 before spreading to the US in 1898. In the United States, the associate degree may allow transfer into the third year of a bachelor's degree.
Master's degreeA master's degree (from Latin magister) is a postgraduate academic degree awarded by universities or colleges upon completion of a course of study demonstrating mastery or a high-order overview of a specific field of study or area of professional practice. A master's degree normally requires previous study at the bachelor's level, either as a separate degree or as part of an integrated course.
Symmetric polynomialIn mathematics, a symmetric polynomial is a polynomial P(X1, X2, ..., Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial if for any permutation σ of the subscripts 1, 2, ..., n one has P(Xσ(1), Xσ(2), ..., Xσ(n)) = P(X1, X2, ..., Xn). Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting.
Class number formulaIn number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function. We start with the following data: K is a number field. [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the class number, the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the number of roots of unity contained in K.