Lower bounds for fully dynamic connectivity problems in graphs
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We settle a problem of Dujmovic, Eppstein, Suderman, and Wood by showing that there exists a function f with the property that every planar graph G with maximum degree d admits a drawing with noncrossing straight-line edges, using at most f(d) different sl ...
We study two decomposition problems in combinatorial geometry. The first part of the thesis deals with the decomposition of multiple coverings of the plane. We say that a planar set is cover-decomposable if there is a constant m such that any m-fold coveri ...
Two subsets of vertices in a graph are called homometric if the multisets of distances determined by them are the same. Let h(n) denote the largest number h such that any connected graph of n vertices contains two disjoint homometric subsets of size h. It ...
We settle a problem of Dujmovic, Eppstein, Suderman, and Wood by showing that there exists a function f with the property that every planar graph G with maximum degree d admits a drawing with noncrossing straight-line edges, using at most f(d) different sl ...
Springer-Verlag New York, Ms Ingrid Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa2011
The visibility graph of a finite set of points in the plane has the points as vertices and an edge between two vertices if the line segment between them contains no other points. This paper establishes bounds on the edge- and vertex-connectivity of visibil ...
A tangle is a graph drawn in the plane so that any pair of edges have precisely one point in common, and this point is either an endpoint or a point of tangency. If we allow a third option: the common point may be a proper crossing between the two edges, t ...
The inverse degree of a graph is the sum of the reciprocals of the degrees of its vertices. We prove that in any connected planar graph, the diameter is at most 5/2 times the inverse degree, and that this ratio is tight. To develop a crucial surgery method ...
We define the crossing number for an embedding of a graph G into R^3, and prove a lower bound on it which almost implies the classical crossing lemma. We also give sharp bounds on the space crossing numbers of pseudo-random graphs. ...
In this paper we study the page number of upward planar directed acyclic graphs. We prove that: (I) the page number of any n-vertex upward planar triangulation G whose every maximal 4-connected component has page number k is at most min {O(k log n), O(2(k) ...