Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Field (mathematics)In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers.
Splitting of prime ideals in Galois extensionsIn mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two.
RandomnessIn common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.
Electronic signatureAn electronic signature, or e-signature, is data that is logically associated with other data and which is used by the signatory to sign the associated data. This type of signature has the same legal standing as a handwritten signature as long as it adheres to the requirements of the specific regulation under which it was created (e.g., eIDAS in the European Union, NIST-DSS in the USA or ZertES in Switzerland). Electronic signatures are a legal concept distinct from digital signatures, a cryptographic mechanism often used to implement electronic signatures.
SecuritySecurity is protection from, or resilience against, potential harm (or other unwanted coercion) caused by others, by restraining the freedom of others to act. Beneficiaries (technically referents) of security may be of persons and social groups, objects and institutions, ecosystems or any other entity or phenomenon vulnerable to unwanted change. Security mostly refers to protection from hostile forces, but it has a wide range of other senses: for example, as the absence of harm (e.g.
Product certificationProduct certification or product qualification is the process of certifying that a certain product has passed performance tests and quality assurance tests, and meets qualification criteria stipulated in contracts, regulations, or specifications (sometimes called "certification schemes" in the product certification industry). Most product certification bodies (or product certifiers) are accredited to or aligned with ISO/IEC 17065 Conformity assessment -- Requirements for bodies certifying products, processes and services (previously ISO/IEC Guide 65:1996) an international standard for ensuring competence in those organizations performing product, process and service certifications.
Regular primeIn number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent p if p is regular.
Elliptic curve primalityIn mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and de, in 1993. The concept of using elliptic curves in factorization had been developed by H. W.
Discrete logarithmIn mathematics, for given real numbers a and b, the logarithm logb a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm logb a is an integer k such that bk = a. In number theory, the more commonly used term is index: we can write x = indr a (mod m) (read "the index of a to the base r modulo m") for rx ≡ a (mod m) if r is a primitive root of m and gcd(a,m) = 1. Discrete logarithms are quickly computable in a few special cases.