MPEG-1MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s (26:1 and 6:1 compression ratios respectively) without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) practical. Today, MPEG-1 has become the most widely compatible lossy audio/video format in the world, and is used in a large number of products and technologies.
Random number generationRandom number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.
Nothing-up-my-sleeve numberIn cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm.
Format-preserving encryptionIn cryptography, format-preserving encryption (FPE), refers to encrypting in such a way that the output (the ciphertext) is in the same format as the input (the plaintext). The meaning of "format" varies. Typically only finite sets of characters are used; numeric, alphabetic or alphanumeric. For example: Encrypting a 16-digit credit card number so that the ciphertext is another 16-digit number. Encrypting an English word so that the ciphertext is another English word.
SHA-2SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.
Matrix normIn mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of given dimensions). Given a field of either real or complex numbers, let be the K-vector space of matrices with rows and columns and entries in the field . A matrix norm is a norm on . This article will always write such norms with double vertical bars (like so: ).
Confusion and diffusionIn cryptography, confusion and diffusion are two properties of the operation of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. These properties, when present, work together to thwart the application of statistics and other methods of cryptanalysis. Confusion in a symmetric cipher is obscuring the local correlation between the input (plaintext) and output (ciphertext) by varying the application of the key to the data, while diffusion is hiding the plaintext statistics by spreading it over a larger area of ciphertext.
Operator normIn mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it "lengthens" vectors. Given two normed vector spaces and (over the same base field, either the real numbers or the complex numbers ), a linear map is continuous if and only if there exists a real number such that The norm on the left is the one in and the norm on the right is the one in .
Genetic algorithmIn computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.