Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible s ...
Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling sup ...
The discovery of unconventional superconductivity in a broad class of iron-based materials invoked extensive research on the corresponding compounds of other transition metals. For instance, BaNi2P2 exhibits a superconducting transition with a critical tem ...
The continuous reduction of the structural size in nanotechnology slowed down over the last decade, approaching the natural limit of single atoms as building blocks of matter. Therefore, intensive research is directed toward exploring new frontiers, in par ...
Understanding the physical properties of unconventional superconductors as well as of other correlated materials presents a formidable challenge. Their unusual evolution with doping, frequency, and temperature has frequently led to non-Fermi-liquid (non-FL ...
Quenched disorder slows down the scrambling of quantum information. Using a bottom-up approach, we formulate a kinetic theory of scrambling in a correlated metal near a superconducting transition, following the scrambling dynamics as the impurity scatterin ...
In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
Low-temperature variable-energy electron irradiation was used to induce non-magnetic disorder in a single crystal of a hole-doped iron-based superconductor, Ba1-xKxFe2As2, x = 0.80. To avoid systematic errors, the beam energy was adjusted non-consequently ...
The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and ...
Quantum magnetic impurities give rise to a wealth of phenomena attracting tremendous research interest in recent years. On a normal metal, magnetic impurities generate the correlation-driven Kondo effect. On a superconductor, bound states emerge inside the ...