For the universities of the emergent countries, and those of Cameroon in particular, the fight to reach a durable development requires to know the needed scientific and technical information for their development, how to get it and to spread it out among partners in the country. Obviously, the complete answer to these preoccupations lies well beyond the framework of this project, but a projection, partial but highly significant, can nevertheless be obtained if one concentrates one's efforts on a specific technological field : in the present study, we shall treat of antennas for telecommunications systems. This subject is highly suitable as example and potential incubator for future achievements. The ultimate goal is to design and carry out the fabrication of a system of satellite communications adapted to the financial resources and to the development needs of the universities of the South. First of all, we will review the state of the art in satellite communication systems, both for already operating ones and also for new systems, still under development. Then we will determine which system of satellite telecommunications has a receiver and communication fees with affordable costs : our choice will be made on Worldspace satellite system, which was actually designed for developing countries. We will also review the status of planar antenna and low noise amplifier technology, and then explicit the basic challenge involved in our thesis project. One of the aims of this project is to use local wood as dielectric in SSFIP type antennas. Before using a material as dielectric in an antenna design, it must be characterized. Before carrying the characterization of local wood species, we will begin by reviewing some commonly used dielectric measurement techniques. Then we will carry out a series of measurements to characterize the species of wood growing in the Cameroonian forest. At the end of the series of measurements and according to the dielectric losses observed, we will select the species of wood best suited to make a good substrate for a microstrip antenna. Next, we will design, manufacture and test low cost antennas. These antennas must satisfy not only technical criteria compatible with those of the telecommunications system chosen but, even most importantly, it must meet socioeconomic criteria : the antennas must be manufactured with low cost and locally available materials, making use of simple technological processes. Once we have found the wood species that exhibits the lowest dielectric losses, we will simulate, and then manufacture the SSFIP type antenna with wood as substrate and aluminium as conducting element. Then we will measure its characteristics and check whether they are compatible with those of a Worldspace receiver. The signal received from the satellite by the antenna is very weak. It will be important to strengthen the received signal with a low noise amplifier (LNA) before connecting the antenna to the receiver. Thus the ante
Romain Christophe Rémy Fleury, Amir Jafargholi, Jalaledin Tayebpour
Anja Skrivervik, Abolfazl Azari