Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.
Altho ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Recent advancements in deep learning have revolutionized 3D computer vision, enabling the extraction of intricate 3D information from 2D images and video sequences. This thesis explores the application of deep learning in three crucial challenges of 3D com ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
Traditional example-based learning methods are often limited by static, expert-created content. Hence, they face challenges in scalability, engagement, and effectiveness, as some learners might struggle to relate to the examples or find them relevant. To a ...
Electrical stimulation of the visual nervous system could improve the quality of life of patients affected by acquired blindness by restoring some visual sensations, but requires careful optimization of stimulation parameters to produce useful perceptions. ...
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...