Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness1,2. For solid-state mechanical resonators in which oscil ...
Parametric amplifiers play a crucial role in modern quantum technology by enabling the enhancement of weak signals with minimal added noise. Traditionally, Josephson junctions have been the primary choice for constructing parametric amplifiers. Nevertheles ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.
Quantum mechanics gives predictions that are inconsistent with local realism.
The experiment proving this fact (Bell, 1964) gives a quantum proto ...
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
A large variety of new physics models suggest that the rates for lepton flavour violating b-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays.This thesis presents the se ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...