Beta functionIn mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral for complex number inputs such that . The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta. The beta function is symmetric, meaning that for all inputs and .
Reservoir modelingIn the oil and gas industry, reservoir modeling involves the construction of a computer model of a petroleum reservoir, for the purposes of improving estimation of reserves and making decisions regarding the development of the field, predicting future production, placing additional wells and evaluating alternative reservoir management scenarios. A reservoir model represents the physical space of the reservoir by an array of discrete cells, delineated by a grid which may be regular or irregular.