The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify al ...
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene ...
Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, interspecies genomic differences limit the joint ...
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been di ...
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 ( ...
During gastrulation, Hox genes are activated in a timesequence that follows the order of the genes along their clusters. This property, which is observed in all animals that develop following a progressive rostral-to-caudal morphogenesis, is associated wit ...
Gene regulatory networks (GRNs) play a crucial role in an organism's response to changing environmental conditions. Cellular behaviors typically result from the integration of multiple gene outputs, and their regulation often demands precise control of num ...
Temporal activation of Hox genes in mouse pseudo-embryos in vitro initiates at the anterior part of the cluster and is accompanied by asymmetric loading of cohesin. Posterior CTCF sites then successively act as transient insulators, regulating the timed tr ...
In vertebrate embryos, the elongating body axis is patterned via the sequential and rhyth-mic production of segments from a posterior unsegmented tissue called the presomitic mesoderm (PSM). This process is controlled by a population of cellular oscillator ...