We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a ...
We have performed electrochemical treatment of the van der Waals antiferromagnetic materials FePS3 and NiPS3 with the ionic liquid EMIM-BF4, achieving significant molecular intercalation. Mass analysis of the intercalated compounds, EMIMx-FePS3 and EMIMx-N ...
We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavele ...
Chemiresistive gas sensors composed of a thermoplastic polymer matrix and conductive fillers offer various advantages for detecting volatile organic compounds (VOCs), including low power consumption due to near-room-temperature operation, high sensitivity, ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...