Rate of returnIn finance, return is a profit on an investment. It comprises any change in value of the investment, and/or cash flows (or securities, or other investments) which the investor receives from that investment over a specified time period, such as interest payments, coupons, cash dividends and stock dividends. It may be measured either in absolute terms (e.g., dollars) or as a percentage of the amount invested. The latter is also called the holding period return.
Return on capitalReturn on capital (ROC), or return on invested capital (ROIC), is a ratio used in finance, valuation and accounting, as a measure of the profitability and value-creating potential of companies relative to the amount of capital invested by shareholders and other debtholders. It indicates how effective a company is at turning capital into profits. The ratio is calculated by dividing the after tax operating income (NOPAT) by the average book-value of the invested capital (IC).
Return on investmentReturn on investment (ROI) or return on costs (ROC) is a ratio between net income (over a period) and investment (costs resulting from an investment of some resources at a point in time). A high ROI means the investment's gains compare favourably to its cost. As a performance measure, ROI is used to evaluate the efficiency of an investment or to compare the efficiencies of several different investments. In economic terms, it is one way of relating profits to capital invested.
Finite fieldIn mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number. The order of a finite field is its number of elements, which is either a prime number or a prime power.
Finite groupIn abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century.
Finite ringIn mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups, the theory of finite rings is simpler than that of finite groups.