Complex dynamical networks are ubiquitous in many fields of science from engineering to biology, physics, and sociology. Collective behavior, and in particular synchronization,) is one of the most interesting consequences of interaction of dynamical systems over complex networks. In this thesis we study some aspects of synchronization in dynamical networks. The first section of the study discuses the problem of synchronizability in dynamical networks. Although synchronizability, i.e. the ease by which interacting dynamical systems can synchronize their activity, has been frequently used in research studies, there is no single interpretation for that. Here we give some possible interpretations of synchronizability and investigate to what extent they coincide. We show that in unweighted dynamical networks different interpretations of synchronizability do not lie in the same line, in general. However, in networks with high degrees of synchronization properties, the networks with properly assigned weights for the links or the ones with well-performed link rewirings, the different interpretations of synchronizability go hand in hand. We also show that networks with nonidentical diffusive connections whose weights are assigned using the connection-graph-stability method are better synchronizable compared to networks with identical diffusive couplings. Furthermore, we give an algorithm based on node and edge betweenness centrality measures to enhance the synchronizability of dynamical networks. The algorithm is tested on some artificially constructed dynamical networks as well as on some real-world networks from different disciplines. In the second section we study the synchronization phenomenon in networks of Hindmarsh-Rose neurons. First, the complete synchronization of Hindmarsh-Rose neurons over Newman-Watts networks is investigated. By numerically solving the differential equations of the dynamical network as well as using the master-stability-function method we determine the synchronizing coupling strength for diffusively coupled Hindmarsh-Rose neurons. We also consider clustered networks with dense intra-cluster connections and sparse inter-cluster links. In such networks, the synchronizability is more influenced by the inter-cluster links than intra-cluster connections. We also consider the case where the neurons are coupled through both electrical and chemical connections and obtain the synchronizing coupling strength using numerical calculations. We investigate the behavior of interacting locally synchronized gamma oscillations. We construct a network of minimal number of neurons producing synchronized gamma oscillations. By simulating giant networks of this minimal module we study the dependence of the spike synchrony on some parameters of the network such as the probability and strength of excitatory/inhibitory couplings, parameter mismatch, correlation of thalamic input and transmission time-delay. In the third section of the thesis we stud
Olaf Blanke, Fosco Bernasconi, Nathan Quentin Faivre, Michael Eric Anthony Pereira
Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani
Dimitri Nestor Alice Van De Ville, Thomas William Arthur Bolton, Farnaz Delavari, Nada Kojovic