The quality of sleep has recently come to the forefront of public health concerns in industrialized nations. Indeed, voluntary sleep curtailment is widespread, sleep disorders are increasingly recognized and both correlate with the current epidemiology of diabetes and obesity (Van Cauter and Knutson, 2008). Sleep fragmentation (SF) is a periodic disruption found in highly prevalent sleep-related breathing and movement disorders, where the sleeper might be aroused several hundred times per night. By roughly summing the prevalence of obstructive sleep apnea (OSA) syndromes and periodic limb movement disorders, two of the most common sleep disorders, we predict a total prevalence for SF of nearly 15% in the European active population. Overlooked cases and insufficient concern for the problematic bear a major socioeconomic burden because of the broad impact of excessive daytime sleepiness on productivity (Hossain and Shapiro, 2002), motor vehicle accidents (Aldrich, 1989) and medical complications (Spiegel et al., 2009). Recurrent interference with the natural architecture of sleep leads to sleepiness, difficulty in concentration and cognitive impairments such as decreased reaction times and poor working memory equivalent to a full night of sleep deprivation in severe cases (Bonnet, 1985, 1989; Stepanski, 2002). In addition, recent experimental evidence in humans has unraveled the unprecedented link between sleep of poor quality and dramatic endocrine imbalances such as deregulation of appetite controlling hormones, glucocorticoids and increase in sympathetic tone, ultimately leading to the development of insulin resistance (Spiegel et al., 2009; Stamatakis and Punjabi, 2010). Current animal models for the study of sleep pathology mostly involve short intervention often biased by stress induction and usually involving a complete period of sleep deprivation. These models do not tightly reflect the most common clinical pattern characterized by sleep perturbation over long periods of time. Therefore, paying attention to maximally avoid methodological stress, we designed a new device aiming at performing instrumental SF for fourteen days in mice. Our model mimics SF observed in sleep disorders since it has no major impact on circadian timing and total amount of sleep but clearly shortens individual sleep episodes. With this method, we approached three problematics that were insufficiently addressed in the literature. In our first study, we addressed the question of whether SF could trigger electrophysiological and molecular sleep homeostasis mechanisms in the short-term and whether these effects could be maintained in the long-term. We showed that SF leads to an anticipated homeostatic regulation of Slow Wave Activity (SWA), the sleep EEG hallmark of sleep homeostasis. Furthermore, EEG spectral analysis revealed an unexpected power increase in 4-40 Hz frequencies during sleep with a clear increase in the amplitude of slow waves and spindles. We concluded
Jean-Philippe Thiran, Gabriel Girard, Elda Fischi Gomez, Philipp Johannes Koch, Liana Okudzhava
Jean-Philippe Thiran, Gabriel Girard, Elda Fischi Gomez, Liana Okudzhava