Feature engineeringFeature engineering or feature extraction or feature discovery is the process of extracting features (characteristics, properties, attributes) from raw data. Due to deep learning networks, such as convolutional neural networks, that are able to learn it by itself, domain-specific- based feature engineering has become obsolete for vision and speech processing.
Molecular modelA molecular model is a physical model of an atomistic system that represents molecules and their processes. They play an important role in understanding chemistry and generating and testing hypotheses. The creation of mathematical models of molecular properties and behavior is referred to as molecular modeling, and their graphical depiction is referred to as molecular graphics. The term, "molecular model" refer to systems that contain one or more explicit atoms (although solvent atoms may be represented implicitly) and where nuclear structure is neglected.
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.