In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Thin-laminate composites with thicknesses below 200 mu m hold significant promise for future, larger, and lighter deployable structures. This paper presents a study of the time-dependent failure behavior of thin carbon-fiber laminates under bending, focusi ...
Functional data are typically modeled as sample paths of smooth stochastic processes in order to mitigate the fact that they are often observed discretely and noisily, occasionally irregularly and sparsely. The smoothness assumption is imposed to allow for ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
A near collision attack against the Grain v1 stream cipher was proposed by Zhang et al. in Eurocrypt 18. The attack uses the fact that two internal states of the stream cipher with very low hamming distance between them, produce similar keystream sequences ...
We study the homogenization of the Poisson equation with a reaction term and of the eigenvalue problem associated to the generator of multiscale Langevin dynamics. Our analysis extends the theory of two-scale convergence to the case of weighted Sobolev spa ...