Modular curveIn number theory and algebraic geometry, a modular curve Y(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves X(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane).