Injective hullIn mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in . A module E is called the injective hull of a module M, if E is an essential extension of M, and E is injective. Here, the base ring is a ring with unity, though possibly non-commutative. An injective module is its own injective hull. The injective hull of an integral domain is its field of fractions .
Injective objectIn mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .
CrystalA crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography.
Aix-en-ProvenceAix-en-Provence (UKˌɛks_ɒ̃_prɒˈvɒ̃s, USˌeɪks_ɒ̃_proʊˈvɒ̃s,ˌɛks-), or simply Aix (medieval Occitan: Aics), is a city and commune in southern France, about north of Marseille. A former capital of Provence, it is the subprefecture of the arrondissement of Aix-en-Provence, in the department of Bouches-du-Rhône, in the region of Provence-Alpes-Côte d'Azur. The population of Aix-en-Provence is approximately 145,000. Its inhabitants are called Aixois or, less commonly, Aquisextains.
Eigenvalues and eigenvectorsIn linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.