Ocean thermal energy conversionOcean Thermal Energy Conversion (OTEC) uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. OTEC can operate with a very high capacity factor and so can operate in base load mode. The denser cold water masses, formed by ocean surface water interaction with cold atmosphere in quite specific areas of the North Atlantic and the Southern Ocean, sink into the deep sea basins and spread in entire deep ocean by the thermohaline circulation.
Global surface temperatureIn earth science, global surface temperature (GST; sometimes referred to as global mean surface temperature, GMST, or global average surface temperature) is calculated by averaging the temperature at the surface of the sea and air temperature over land. Periods of global cooling and global warming have alternated during Earth's history. of reliable global temperature measurements began in the 1850—1880 time frame. Through 1940, the average annual temperature increased, but was relatively stable between 1940 and 1975.
Thermal efficiencyIn thermodynamics, the thermal efficiency () is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work).
GullyA gully is a landform created by running water, mass movement, or commonly a combination of both eroding sharply into soil or other relatively erodible material, typically on a hillside or in river floodplains or terraces. Gullies resemble large ditches or small valleys, but are metres to tens of metres in depth and width and are characterised by a distinct 'headscarp' or 'headwall' and progress by headward (i.e. upstream) erosion.
RillIn hillslope geomorphology, a rill is a shallow channel (no more than a few inches/decimeters deep) cut into soil by the erosive action of flowing surface water. Similar but smaller incised channels are known as microrills; larger incised channels are known as gullies. Artificial rills are channels constructed to carry a water supply from a distant water source. In landscape or garden design, constructed rills are an aesthetic water feature. Rills are narrow and shallow channels which are eroded into unprotected soil by hillslope runoff.