Energy return on investmentIn energy economics and ecological energetics, energy return on investment (EROI), also sometimes called energy returned on energy invested (ERoEI), is the ratio of the amount of usable energy (the exergy) delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Arithmetically the EROI can be defined as: When the EROI of a source of energy is less than or equal to one, that energy source becomes a net "energy sink", and can no longer be used as a source of energy.
HeatIn thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat.
Load-following power plantA load-following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load-following plants are typically in between base load and peaking power plants in efficiency, speed of start-up and shut-down, construction cost, cost of electricity and capacity factor. Base load power plants are dispatchable plants that tend to operate at maximum output.
Heat death paradoxThe heat death paradox, also known as thermodynamic paradox, Clausius' paradox and Kelvin’s paradox, is a reductio ad absurdum argument that uses thermodynamics to show the impossibility of an infinitely old universe. It was formulated in February 1862 by Lord Kelvin and expanded upon by Hermann von Helmholtz and William John Macquorn Rankine.
Object storageObject storage (also known as object-based storage) is a computer data storage that manages data as objects, as opposed to other storage architectures like which manages data as a file hierarchy, and block storage which manages data as blocks within sectors and tracks. Each object typically includes the data itself, a variable amount of metadata, and a globally unique identifier. Object storage can be implemented at multiple levels, including the device level (object-storage device), the system level, and the interface level.
Stationary fuel-cell applicationsStationary fuel-cell applications (or stationary fuel-cell power systems) are applications for fuel cells that are either connected to the electric grid (distributed generation) to provide supplemental power and as emergency power system for critical areas, or installed as a grid-independent generator for on-site service. In 2012 more than 45,700 fuel-cell systems were shipped all over the world — in residential homes, hospitals, nursing homes, hotels, office buildings, schools, utility power plants.
Ocean thermal energy conversionOcean Thermal Energy Conversion (OTEC) uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. OTEC can operate with a very high capacity factor and so can operate in base load mode. The denser cold water masses, formed by ocean surface water interaction with cold atmosphere in quite specific areas of the North Atlantic and the Southern Ocean, sink into the deep sea basins and spread in entire deep ocean by the thermohaline circulation.
Industrial ecologyIndustrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function.
Alkaline fuel cellThe alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%. NASA has used alkaline fuel cells since the mid-1960s, in the Apollo-series missions and on the Space Shuttle. The fuel cell produces power through a redox reaction between hydrogen and oxygen.
Microbial fuel cellMicrobial fuel cell (MFC) is a type of bioelectrochemical fuel cell system also known as micro fuel cell that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donor) on the anode to oxidized compounds such as oxygen (also known as oxidizing agent or electron acceptor) on the cathode through an external electrical circuit. MFCs produce electricity by using the electrons derived from biochemical reactions catalyzed by bacteria.