Atomic force microscopy (AFM) is a widely used imaging tool for obtaining a variety of information for a range of samples. Although it was initially intended to serve as a method of observing very flat solid surfaces, its use expanded into several other fi ...
After decades of technological advancements, high-speed atomic force microscopy (HS-AFM) has emerged as a powerful technique for visualizing dynamic processes. At the nanoscale, the AFM provides valuable insights into the sample by sensing minute interacti ...
Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...
The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Metal-porphyrins are studied intensively due their potential applications, deriving from the variety of electronic and chemical properties, tunable by selecting metal centers and functional groups. Metalation, de- and trans-metalation processes are fundame ...
The success of plastics heavily relies on fast melt processing methods used for large-scale industrial manufacturing, including injection molding. The hierarchical structure of the solid polymer depends on material selection combined with processing condit ...
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
The Cu-3d states in the high-T-c cuprates are often described as a single band of 3d(x2-y2) states, with the other four 3d states having about 2 to 3 eV higher energy due to the lower-than-octahedral crystal field at the copper sites. However, excitations ...
Ultrasensitive nanomechanical instruments, e.g. atomic force microscopy (AFM), can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes. However, these instruments are limited because ...