Nitrous oxide is the third most important gas contributing to global warming and its concentration in the atmosphere is still on the rise. Nitric acid production represents the largest source of N2O in the chemical industry, with a total annual emission of about 400 kt N2O. An efficient way to reduce the N2O is the catalytic decomposition into N2 and O2. ZSM-5 zeolites containing iron are known to be effective in this reaction involving Fe(II)-extraframework species as active sites. But the nature of these sites and the reaction network is still under debate. Often the N2O is in the exhaust together with other gases like NOx, COx, oxygen, and water vapor, which may influence the catalyst efficiency towards N2O decomposition. The effect of these gases on the reaction mechanism is still not understood yet. The aim of this work is to study the decomposition mechanism of N2O over isomorphously substituted Fe-ZSM-5 (0.02-0.55% Fe) using transient response methods. Kinetic studies under steady-state conditions give overall information about the reaction, whereas transient experiments lead to information on the individual steps and the possibility to suggest a reaction model. Transient response methods are applied in vacuum using a Temporal Analysis of Products (TAP) setup and at ambient pressure using a Micromeritics AutoChem 2910 analyzer. The influence of different gases such as NO, H2O and NO2 on the decomposition of N2O over Fe-ZSM-5 is investigated to gain insight into their effect on this reaction. The TAP multifunctional reactor system is used to perform transient pulse experiments for micro-kinetic analysis of complex heterogeneous catalytic reactions. This setup allows to dose precisely reactants and to monitor product formation with submillisecond time resolution implying the absence of external mass or heat transfer. A reproducible low hydroxylation level of the catalyst can be attained in vacuum. The results from the transient responses with the Micromeritics analyzer are obtained under conditions more relevant to "operando". The mechanism of N2O decomposition over Fe containing ZSM-5 was studied by transient response methods at ambient pressure with the Micromeritics analyzer and under vacuum with the TAP setup. Both approaches showed that the mechanism strongly depends on the reaction temperature, but in all cases involves atomic oxygen loading from N2O with N2 evolution as the first reaction step. The surface oxygen, (O)Fe, formed from N2O possesses very high reactivity and oxidizes CO to CO2 already at 373 K. A complete saturation of the active sites can be reached by the catalyst exposure to N2O at low temperatures (T < 600 K in vacuum, T < 523 K at ambient pressure). Under these conditions oxygen is stored and does not desorb. On that basis, the concentration of sites active for the surface atomic oxygen loading from N2O is determined by pulse experiments using the TAP setup. The concentration of active sites is found to be the same a
Harald Brune, Hao Yin, Wei Fang
Athanasios Nenes, Mária Lbadaoui-Darvas, André Welti