Pierre DillenbourgA former teacher in elementary school, Pierre Dillenbourg graduated in educational science (University of Mons, Belgium). He started his research on learning technologies in 1984. In 1986, he has been on of the first in the world to apply machine learning to develop a self-improving teaching system. He obtained a PhD in computer science from the University of Lancaster (UK), in the domain of artificial intelligence applications for education. He has been assistant professor at the University of Geneva. He joined EPFL in 2002. He has been the director of Center for Research and Support on Learning and its Technologies, then academic director of Center for Digital Education, which implements the MOOC strategy of EPFL (over 2 million registrations). He is full professor in learning technologies in the School of Computer & Communication Sciences, where he is the head of the CHILI Lab: "Computer-Human Interaction for Learning & Instruction ». He is the director of the leading house DUAL-T, which develops technologies for dual vocational education systems (carpenters, florists,...). With EPFL colleagues, he launched in 2017 the Swiss EdTech Collider, an incubator with 80 start-ups in learning technologies. He (co-)-founded 4 start-ups, does consulting missions in the corporate world and joined the board of several companies or institutions. In 2018, he co-founded LEARN, the EPFL Center of Learning Sciences that brings together the local initiatives in educational innovation. He is a fellow of the International Society for Learning Sciences. He currently is the Associate Vice-President for Education at EPFL.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Gabriela Tejada GuerreroGabriela has extensive expertise in international cooperation in education, research and innovation. She joined EPFL as scientist at the Cooperation and Development Center (CODEV) where she led the EPFL Leading House Program (2014-2017) of the Swiss government, which upheld Swiss bilateral research cooperation with Brazil, India, Vietnam and Latin America. Her research focused on scientific diasporas and skilled migration with diverse international collaborations under her leadership. She worked at the University of Zurich, and the UNDP in Moldova and Geneva, and taught at the Monterrey Institute of Technology (ITESM). She was visiting researcher at the CES at Harvard University and the CIS at ETH Zurich. Gabriela obtained a BA in International Relations from the UIA (Ibero) in Mexico, and a PhD in Political Sciences from the UAB in Barcelona. She obtained a CAS IPA - International Policy and Advocacy of the D-MTEC, ETH Zurich (2019). Since 2020 Gabriela is Vice-President of the Swiss Commission for UNESCO (member since 2016), where she promotes science-society linkages and advocates for an inclusive development and dialogue through education, science and culture.Since May 2019, Gabriela is Academic Deputy at the Direction of the College of Humanities (CDH). She serves the Scholars at Risk program (SAR) at EPFL in an advisory capacity.
Marc VielleMarc Vielle has obtained a PhD degree in economics from the University Panthéon-Sorbonne (Paris). He worked as an economic researcher at the Laboratoire ERASME of Ecole Centrale de Paris and Université de Paris I (1987-1992), where he developed and managed the macroeconomic model HERMES-France. In 1991 he joined the Commissariat à lEnergie Atomique (CEA) as senior economist where he participated to the development of two models (GEM-E3 and PRIMES) funded by the European Commission. In 1996 he joined the Institut dEconomie Industrielle of Toulouse directed by Jean-Jacques Laffont. In 2003 he joined the Laboratoire dEconomie des Ressources Naturelles directed by Michel Moreaux. Since 2007, Marc works at EPFL.
He is member of the GEMINI-E3 team and participates to the development of the world general equilibrium model GEMINI-E3. Marc has a strong experience in economic modeling (especially CGE modeling), quantitative analysis, energy and climate change policies. He has contributed to several research projects funded by national governments, European Commission and private companies.
Skype 'Skype Me!' buttonhttp://www.skype.com/go/skypebuttons Marilyne AndersenMarilyne Andersen is a Full Professor of Sustainable Construction Technologies and heads the Laboratory of Integrated Performance in Design (LIPID) that she launched in the Fall of 2010. She was Dean of the School of Architecture, Civil and Environmental Engineering (ENAC) at EPFL from 2013 to 2018 and is the Academic Director of the Smart Living Lab in Fribourg. She also co-leads the Student Kreativity and Innovation Laboratory (SKIL) at ENAC. Before joining EPFL as a faculty, she was an Assistant Professor then Associate Professor tenure-track in the Building Technology Group of the MIT School of Architecture and Planning and the Head of the MIT Daylighting Lab that she founded in 2004. She has also been Invited Professor at the Singapore University of Technology and Design in 2019. Marilyne Andersen owns a Master of Science in Physics and specialized in daylighting through her PhD in Building Physics at EPFL in the Solar Energy and Building Physics Laboratory (LESO) and as a Visiting Scholar in the Building Technologies Department of the Lawrence Berkeley National Laboratory in California. Her research lies at the interface between science, engineering and architectural design with a dedicated emphasis on the impact of daylight on building occupants. Focused on questions of comfort, perception and health and their implications on energy considerations, these research efforts aim towards a deeper integration of the design process with daylighting performance and indoor comfort, by reaching out to various fields of science, from chronobiology and neuroscience to psychophysics and computer graphics. She is leveraging this research in practice through OCULIGHT dynamics, a startup company she co-founded, which offers specialized consulting services on daylight performance and its psycho-physiological effects on building occupants. She is the author of more than 200 papers published in peer-reviewed journals and international conferences and the recipient of several grants and awards including: the Daylight Award for Research (2016), eleven publication awards and distinctions (2009, 2011, 2012, 2015, 2018, 2019) including the Taylor Technical Talent Award 2009 granted by the Illuminating Engineering Society, the 3M Non-Tenured Faculty Grant (2009), the Mitsui Career Development Professorship at MIT (2008) and the EPFL prize of the Chorafas Foundation awarded to her PhD thesis in Sustainability (2005). Her research or teaching has been supported by professional, institutional and industrial organizations such as: the Swiss and the U.S. National Science Foundations, the Velux Foundation, the European Horizon 2020 program, the Boston Society of Architects, the MIT Energy Initiative and InnoSuisse. She was the leader and faculty advisor of the Swiss Team and its NeighborHub project, who won the U.S. Solar Decathlon 2017 competition with 8 podiums out of 10 contests. She is a member of the Board of the LafargeHolcim Foundation for Sustainable Construction and Head of its Academic Committee. She is also a member of the Editorial Board of the journal Building and Environment by Elsevier, and of the journals LEUKOS (of the Illuminating Engineering Society) and Buildings and Cities, by Taylor and Francis. She is expert to the Innovation Council of InnoSuisse and Founding member as well as Board member of the Foundation Culture du Bâti (CUB), and is also founding member of the Daylight Academy and an active member of several committees of the Illuminating Engineering Society (IES) and International Commission on Illumination (CIE).
Sabine SüsstrunkProf. Dr. Sabine Süsstrunk leads the Image and Visual Representation Lab in the School of Computer and Communication Sciences (IC) at EPFL since 1999. From 2015-2020, she was also the first Director of the Digital Humanities Institute (DHI), College of Humanities (CdH). Her main research areas are in computational photography, computational imaging, color image processing and computer vision, machine learning, and computational image quality and aesthetics. Sabine has authored and co-authored over 200 publications, of which 7 have received best paper/demo awards, and holds over 10 patents. Sabine served as chair and/or committee member in many international conferences on image processing, computer vision, and image systems engineering. She is President of the Swiss Science Council SSC, Founding Member and Member of the Board (President 2014-2018) of the EPFL-WISH (Women in Science and Humanities) Foundation, Member of the Board of the SRG SSR (Swiss Radio and Television Corporation), and Member of the Board of Largo Films. She received the IS&T/SPIE 2013 Electronic Imaging Scientist of the Year Award for her contributions to color imaging, computational photography, and image quality, and the 2018 IS&T Raymond C. Bowman and the 2020 EPFL AGEPoly IC Polysphere Awards for excellence in teaching. Sabine is a Fellow of IEEE and IS&T.
Michela TestolinaMichela Testolina obtained her B.Sc. and M.Sc. in Telecommunication Engineering from the University of Trento, Italy. From 2020 she is a PhD student at the Multimedia Signal Processing Group (MMSPG) under the supervision of Prof. Touradj Ebrahimi. Her main research interests are in the field of image processing, in particular image compression and quality metrics.