Laboratory of atmospheric processes and their impacts
Laboratory
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fine particulate matter (PM) affects visibility, climate, and public health. Biomass burning (BB) in the forms of residential wood burning, wildfires, and prescribed burning is a major source of primary and secondary organic matter (OM, an important fracti ...
Understanding how multiphase processes affect the iron-containing aerosol cycle is key to predicting ocean biogeochemistry changes and hence the feedback effects on climate. For this work, the EC-Earth Earth system model in its climate-chemistry configurat ...
The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to ...
Aerosols play a significant role in the atmosphere through affecting the radiative budget, cloud condensation nuclei activity, and visibility. They also cause adverse health effects leading to premature deaths. A major fraction of aerosols is organic matte ...
This dataset contains particle number size distributions between 1.06-16.1 μm (aerodynamic diameter) and total concentration averaged to 1 min time resolution, measured with a commercial Aerodynamic Particle Sizer spectrometer (APS model 3321, TSI Incorpor ...
The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are fo ...
Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through ...
A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air poll ...
Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed at ...
Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight obser ...