Laboratory of Nanoscale Magnetic Materials and Magnonics
Laboratory
Related publications (170)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where neutron scattering can provide valuable insight into the magnetic properties of physical realisations of model systems. This thesis focuses on the excitation spectr ...
We report on the generation and confinement of short-wavelength spin waves in a continuous film with periodically modulated magnetic anisotropy. The concept, which is demonstrated for strain-coupled Co40Fe40B20/BaTiO3 heterostructures, relies on abrupt rot ...
Using conventional coplanar waveguides (CPWs), we excited spin waves with a wavelength λ down to 310 nm in a 200 nm thin yttrium iron garnet film grown by liquid phase epitaxy. Spin-wave transmission was detected between CPWs that we separated by up to 2 m ...
Magnetic materials hosting correlated electrons play an important role for information technology and signal processing. The currently used ferro-, ferri- and antiferromagnetic materials provide microscopic moments (spins) that are mainly collinear. Recent ...
This TPIV experiment deals with first measurements of CeAlSi and CeAlGe magnetic properties and allows to a comparison between these last two. The first step is a description of MPMS measurement, then the paramagnetism and ferromagnetism theory leads to an ...
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...
The damping of spin waves transmitted through a two-port magnonic device implemented on a yttrium iron garnet thin film is shown to be proportional to the temperature gradient imposed on the device. The sign of the damping depends on the relative orientati ...
We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continu ...
We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane angular ...
Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu2OSeO3. For the ...