Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les perceptrons multicouches (MLP) et leur application de la classification à la régression, y compris le théorème d'approximation universelle et les défis liés aux gradients.
Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.
Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.
Explore l'optimisation de la formation contradictoire, la mise en œuvre pratique, l'interprétation, l'équité, la distance de Wasserstein et les GAN de Wasserstein.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.