Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Suite définie par récurrenceEn mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Décalage de Bernoulli (mathématiques)Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.
Box countingBox counting is a method of gathering data for analyzing complex patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, typically "box"-shaped, and analyzing the pieces at each smaller scale. The essence of the process has been compared to zooming in or out using optical or computer based methods to examine how observations of detail change with scale. In box counting, however, rather than changing the magnification or resolution of a lens, the investigator changes the size of the element used to inspect the object or pattern (see Figure 1).
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Dynamique symboliqueEn mathématiques, la dynamique symbolique est une branche de l'étude des systèmes dynamiques. Cela consiste à étudier un système en partitionnant l'espace en un nombre fini de régions et en s'intéressant aux suites possibles de régions traversées lors de l'évolution du système. Si l'on associe à chaque région un symbole, on peut associer à chaque trajectoire une suite (infinie) de symboles, d'où le nom de « dynamique symbolique ».
Ornstein isomorphism theoremIn mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, ergodic automorphisms of the n-torus, and the continued fraction transform.
Transformation du boulangerLa transformation du boulanger est une transformation basée sur l'idée d'un mélange analogue au pétrissage par un boulanger qui étire une pâte jusqu'à ce qu'elle soit d'épaisseur moitié, puis la coupe en deux et superpose les deux moitiés pour lui redonner sa dimension initiale, et ainsi de suite. Ce mélange est souvent évoqué en théorie du chaos. Dans ce cas, il s'agit d'une version continue de la transformation. Une version discrète de cette transformation existe aussi pour manipuler des images informatiques.
Oscillateur de Van der PolL’oscillateur de Van der Pol est un système dynamique à temps continu à un degré de liberté. Il est décrit par une coordonnée x(t) vérifiant une équation différentielle faisant intervenir deux paramètres : une pulsation propre ω et un coefficient de non-linéarité ε. Lorsque ε = 0, cet oscillateur se réduit à un oscillateur harmonique pur. Il porte le nom de Balthasar van der Pol.