MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
CS-470: Advanced computer architectureThe course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explo
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
CS-119(a): Information, Computation, CommunicationD'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects
liés aux systèmes: ordi
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
COM-300: Stochastic models in communicationL'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i