Proxy (variable)En sciences sociales et dans les sciences expérimentales, notamment pour des applications statistiques, un proxy ou une variable proxy (au Québec, la traduction recommandée est variable de substitution ou variable substitutive) est une variable qui n'est pas significative en soi, mais qui remplace une variable utile mais non observable ou non mesurable. Pour qu'une variable soit un bon proxy, elle doit avoir une bonne corrélation, pas nécessairement linéaire, avec la variable utile. Cette corrélation peut être positive ou négative.
Sequential pattern miningSequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity. Sequential pattern mining is a special case of structured data mining. There are several key traditional computational problems addressed within this field.
Préparation des donnéesLa préparation de données est un processus qui précède celui de l'analyse de données. Il est constitué de plusieurs tâches comme la collecte de données, le nettoyage de données, l'enrichissement de données ou encore la fusion de données. Au cours de la préparation des données, les données dites « brutes » sont soumises à différents traitements afin de les rendre exploitables pour l'étape d'Exploration de données, au cours de laquelle le but sera d'extraire des connaissances à partir des données via la construction de modèles.
Règle d'associationDans le domaine du data mining la recherche des règles d'association est une méthode populaire étudiée d'une manière approfondie dont le but est de découvrir des relations ayant un intérêt pour le statisticien entre deux ou plusieurs variables stockées dans de très importantes bases de données. Piatetsky-Shapiro présentent des règles d'association extrêmement fortes découvertes dans des bases de données en utilisant différentes mesures d’intérêt. En se basant sur le concept de relations fortes, Rakesh Agrawal et son équipeR.
Kernel principal component analysisIn the field of multivariate statistics, kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space. Recall that conventional PCA operates on zero-centered data; that is, where is one of the multivariate observations.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Algorithme APrioriL'algorithme APriori est un algorithme d'exploration de données conçu en 1994, par Rakesh Agrawal et Ramakrishnan Sikrant, dans le domaine de l'apprentissage des règles d'association. Il sert à reconnaitre des propriétés qui reviennent fréquemment dans un ensemble de données et d'en déduire une catégorisation. L'algorithme Apriori s'execute en deux étapes : Soient minsupp l'indice de support minimum donné, et minconf l'indice de confiance donné. Génération de tous les itemsets fréquents c'est-à-dire Généra
Recherche des plus proches voisinsLa recherche des plus proches voisins, ou des k plus proches voisins, est un problème algorithmique classique. De façon informelle le problème consiste, étant donné un point à trouver, dans un ensemble d'autres points, quels sont les k plus proches. La recherche de voisinage est utilisée dans de nombreux domaines, tels la reconnaissance de formes, le clustering, l'approximation de fonctions, la prédiction de séries temporelles et même les algorithmes de compression (recherche d'un groupe de données le plus proche possible du groupe de données à compresser pour minimiser l'apport d'information).
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Carte autoadaptativeLes cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».