Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Explore les modèles de facteurs fonctionnels à haute dimension pour prévoir les courbes de mortalité au Japon, en discutant de l'estimation, de la cohérence et de l'application.
Explore la modélisation à l'échelle atomique au moyen d'exercices interactifs et d'affectations notées, couvrant la cristallographie, la diffraction, les défauts et les modèles de régression.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.