Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Explore les distributions sphériques et elliptiques, les mélanges normaux de variance, les modèles de facteurs et l'analyse des composantes principales.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.
Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Couvre les fondamentaux de l'apprentissage automatique avancé, mettant l'accent sur les applications pratiques par des exercices et des projets interactifs.
Explore l'application de la physique statistique dans les problèmes de calcul, couvrant des sujets tels que l'inférence bayésienne, les modèles de verre de spin de champ moyen, et la détection comprimée.