Mutation faux sens500px|aucun|droite En génétique, une mutation faux-sens ou substitution non synonyme est une mutation ponctuelle dans laquelle un nucléotide d'un codon est changé, induisant le changement de l'acide aminé associé. Ceci peut rendre la protéine traduite non fonctionnelle, si les propriétés du nouvel acide aminé sont différentes. Chez les humains, des mutations de ce type sont responsables de maladies telles que l'épidermolyse bulleuse et la drépanocytose.
Région non traduiteLes régions non traduites, ou régions UTR (untranslated regions en anglais), sont les parties de l'ARNm issues de la transcription de l'ADN qui ne sont pas traduites en protéines. On distingue les régions 5'-UTR (contenant par exemple la coiffe chez les eucaryotes) et 3'-UTR, respectivement du côté 5' et 3' de l'ARNm. Les régions UTR — que l'on retrouve tant chez les eucaryotes que chez les procaryotes, virus inclus — ont une grande importance dans la régulation de l'expression d'un gène.
HéréditéL’ est la transmission, au sein d'une espèce vivante ou d'une lignée de cellules, de caractéristiques d'une génération à la suivante. Les mécanismes de l'hérédité sont au cœur de la théorie de l'évolution car ils permettent l'accumulation des variations au fil des générations qui conduit à l'apparition de nouvelles espèces. En général, on associe l'hérédité aux gènes tels qu'ils furent découverts par Gregor Mendel mais d'autres mécanismes dits non mendéliens et épigénétiques peuvent aussi intervenir dans la transmission des caractères biologiques.
Transformation efficiencyTransformation efficiency refers to the ability of a cell to take up and incorporate exogenous DNA, such as plasmids, during a process called transformation. The efficiency of transformation is typically measured as the number of transformants (cells that have taken up the exogenous DNA) per microgram of DNA added to the cells. A higher transformation efficiency means that more cells are able to take up the DNA, and a lower efficiency means that fewer cells are able to do so.
Modelling biological systemsModelling biological systems is a significant task of systems biology and mathematical biology. Computational systems biology aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems. It involves the use of computer simulations of biological systems, including cellular subsystems (such as the networks of metabolites and enzymes which comprise metabolism, signal transduction pathways and gene regulatory networks), to both analyze and visualize the complex connections of these cellular processes.
Molecular epidemiologyMolecular epidemiology is a branch of epidemiology and medical science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of disease within families and across populations. This field has emerged from the integration of molecular biology into traditional epidemiological research. Molecular epidemiology improves our understanding of the pathogenesis of disease by identifying specific pathways, molecules and genes that influence the risk of developing disease.
Métagénomiquevignette|300px|À titre d'exemple : Indices comparés de biodiversité pour 19 métagénomes marins échantillonnés par l'expédition , tels qu'analysés avec GenGIS. La métagénomique ou génomique environnementale est une méthode d'étude du contenu génétique d'échantillons issus d'environnements complexes (ex : intestin, océan, sols, air, etc.) prélevés dans la nature (par opposition à des échantillons cultivés en laboratoire).
Hérédité non mendélienneEn génétique, l'hérédité non mendélienne incluant l'hérédité mitochondriale ou hérédité cytoplasmique désigne la transmission héréditaire d'un trait d'un organisme à sa descendance sans altération de la séquence génétique du génome nucléaire. On emploie ce terme par opposition à l'hérédité mendélienne qui est la forme la plus connue de transmission génétique dont les lois ont notamment été découvertes par Gregor Mendel au .
Nucleotide diversityNucleotide diversity is a concept in molecular genetics which is used to measure the degree of polymorphism within a population. One commonly used measure of nucleotide diversity was first introduced by Nei and Li in 1979. This measure is defined as the average number of nucleotide differences per site between two DNA sequences in all possible pairs in the sample population, and is denoted by .
Personal genomicsPersonal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphism (SNP) analysis chips (typically 0.02% of the genome), or partial or full genome sequencing. Once the genotypes are known, the individual's variations can be compared with the published literature to determine likelihood of trait expression, ancestry inference and disease risk.