ME-321: Control systems + TPProvides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
FIN-407: Machine learning in financeThis course aims to give an introduction to the application of machine learning to finance, focusing on the problems of portfolio optimization and hedging, as well as textual analysis. A particular fo
EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
EE-594: Smart sensors for IoTThis lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
CS-503: Visual intelligence : machines and mindsThe course will discuss classic material as well as recent advances in computer vision and machine learning relevant to processing visual data -- with a primary focus on embodied intelligence and visi