Niels QuackProf. Dr. Niels Quack received the M.Sc. degree from Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, in 2005, and the Dr.Sc. degree from Eidgenössische Technische Hochschule Zürich (ETH), Zürich, Switzerland, in 2010. From 2011 to 2015, he was Postdoctoral Researcher and Visiting Scholar with the Integrated Photonics Laboratory, Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA. From 2014 to 2015, he was Senior MEMS Engineer with Sercalo Microtechnology, Neuchâtel, Switzerland. He is currently an SNSF Assistant Professor with Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. He has authored and co-authored more than 50 papers in leading technical journals and conferences. His research interests include photonic micro and nanosystems, with an emphasis on diamond photonics and silicon photonic MEMS. He is Steering Committee Member of the IEEE International Conference on Optical MEMS and Nanophotonics (OMN) and served as General Chair of the IEEE OMN 2018 and the Latsis Symposium 2019 on Diamond Photonics. He is a Senior Member of IEEE, Member of The Optical Society (OSA) and life member of SPIE.
Jean-Philippe AnsermetJean-Philippe Ansermet was born March 1, 1957 in Lausanne (legal origin Vaumarcus, NE). He obtained a diploma as physics engineer of EPFL in 1980. He went on to get a PhD from the University of Illinois at Urbana-Champaign where, from 1985 to 1987, he persued as post-doc with Prof. Slichter his research on catalysis by solid state NMR studies of molecules bound to the surface of catalysts. From 1987 to 1992 he worked at the materials research center of Ciba-Geigy, on polymers for microelectronics, composites, dielectrics and organic charge transfer complexes. In March 1992, as professor of experimental physics, he developed a laboratory on the theme of nanostructured materials and turned full professor in 1995. Since 1992, he teaches classical mechanics, first to future engineering students, since 2004 to physics majors. Since 2000, he teaches thermodynamics also, to the same group of students. He offers a graduate course in spintronics, and another on spin dynamics. His research activities concern the fabrication and properties of magnetic nanostructures produced by electrodeposition. His involvement since the early days of spintronics have allowed him to gain recognition for his work on giant magnetoresistance (CPP-GMR), magnetic relaxation of single nanostructures, and was among the leading groups demonstrating magnetization reversal by spin-polarized currents. Furthermore, his group uses nuclear magnetic resonance , on the one hand as means of investigation of surfaces and electrodes, on the other hand, as a local probe of the electronic properties of complex ferromagnetic oxides.