Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
DBSCANDBSCAN (density-based spatial clustering of applications with noise) est un algorithme de partitionnement de données proposé en 1996 par Martin Ester, Hans-Peter Kriegel, Jörg Sander et Xiaowei Xu. Il s'agit d'un algorithme fondé sur la densité dans la mesure qui s’appuie sur la densité estimée des clusters pour effectuer le partitionnement. thumb|400px|Les points A sont les points déjà dans le cluster. Les points B et C sont atteignables depuis A et appartiennent donc au même cluster.
Fonction d'activationDans le domaine des réseaux de neurones artificiels, la fonction d'activation est une fonction mathématique appliquée à un signal en sortie d'un neurone artificiel. Le terme de "fonction d'activation" vient de l'équivalent biologique "potentiel d'activation", seuil de stimulation qui, une fois atteint entraîne une réponse du neurone. La fonction d'activation est souvent une fonction non linéaire. Un exemple de fonction d'activation est la fonction de Heaviside, qui renvoie tout le temps 1 si le signal en entrée est positif, ou 0 s'il est négatif.
SynthespianSynthespian est un néologisme créé en août 2000 pour désigner les acteurs de . Il est l'amalgame des mots anglais synthesis (synthèse) et thespian (acteur de théâtre). Le premier synthespian, Nestor Sextone, a pris l'affiche dans le court-métrage Sextone for President, présenté au SIGGRAPH 1988. Il a été créé par Diana Walczak et Jeff Kleiser. Il a été suivi par la chanteuse virtuelle Dozo dans le vidéo-clip Don't Touch Me en 1989.
Synaptic weightIn neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research. In a computational neural network, a vector or set of inputs and outputs , or pre- and post-synaptic neurons respectively, are interconnected with synaptic weights represented by the matrix , where for a linear neuron where the rows of the synaptic matrix represent the vector of synaptic weights for the output indexed by .
Empirical risk minimizationEmpirical risk minimization (ERM) is a principle in statistical learning theory which defines a family of learning algorithms and is used to give theoretical bounds on their performance. The core idea is that we cannot know exactly how well an algorithm will work in practice (the true "risk") because we don't know the true distribution of data that the algorithm will work on, but we can instead measure its performance on a known set of training data (the "empirical" risk).
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Hierarchical control systemA hierarchical control system (HCS) is a form of control system in which a set of devices and governing software is arranged in a hierarchical tree. When the links in the tree are implemented by a computer network, then that hierarchical control system is also a form of networked control system. A human-built system with complex behavior is often organized as a hierarchy. For example, a command hierarchy has among its notable features the organizational chart of superiors, subordinates, and lines of organizational communication.
Élagage alpha-bêtaEn informatique, plus précisément en intelligence artificielle et en théorie des jeux, l’élagage alpha-bêta (abrégé élagage αβ) est une technique permettant de réduire le nombre de nœuds évalués par l'algorithme minimax. Il est utilisé dans des programmes informatiques qui jouent à des jeux à 2 joueurs, comme les échecs ou les dames. L'algorithme minimax effectue une exploration complète de l'arbre de recherche jusqu'à un niveau donné. L'élagage alpha-beta permet d'optimiser grandement l'algorithme minimax sans en modifier le résultat.
Evaluation functionAn evaluation function, also known as a heuristic evaluation function or static evaluation function, is a function used by game-playing computer programs to estimate the value or goodness of a position (usually at a leaf or terminal node) in a game tree. Most of the time, the value is either a real number or a quantized integer, often in nths of the value of a playing piece such as a stone in go or a pawn in chess, where n may be tenths, hundredths or other convenient fraction, but sometimes, the value is an array of three values in the unit interval, representing the win, draw, and loss percentages of the position.