Jamie PaikProf. Jamie Paik is founder and director of the Reconfigurable Robotics Lab (RRL) of Swiss Federal Institute of Technology (EPFL) and a core member of Swiss NCCR robotics group. The RRL leverages expertise in multi-material fabrication and smart material actuation for novel robot designs. She received her PhD in Seoul National University on designing humanoid arm and a hand while being sponsored by Samsung Electronics. This 7-DoF humanoid arm was the lightest in the literature at that time being 3.7kg including the 8-DoF hand. During her Postdoctoral positions in the Institut des Systems Intelligents et de Robotic in Universitat Pierre Marie Curie, Paris VI, she developed laparoscopic tools named JAiMY that are internationally patented and commercialized now by Endocontrol-medical.com. At Harvard University’s Microrobotics Laboratory, she started developing unconventional robots that push the physical limits of material and mechanisms. Her latest research effort is in soft robotics including self-morphing Robogami (robotic origami) that transforms its planar shape to 2D or 3D by folding in predefined patterns and sequences, just like the paper art, origami.
Philippe RenaudPhilippe Renaud is Professor at the Microsystem Laboratory (LMIS4) at EPFL. He is also the scientific director of the EPFL Center of MicroNanoTechnology (CMI). His main research area is related to micronano technologies in biomedical applications (BioMEMS) with emphasis on cell-chips, nanofluidics and bioelectronics. Ph. Renaud is invloved in many scientifics papers in his research area. He received his diploma in physics from the University of Neuchâtel (1983) and his Ph.D. degree from the University of Lausanne (1988). He was postdoctoral fellow at University of California, Berkeley (1988-89) and then at the IBM Zürich Research Laboratory in Switzerland (1990-91). In 1992, he joined the Sensors and Actuators group of the Swiss Center for Electronics and Microtechnology (CSEM) at Neuchâtel, Switzerland. He was appointed assistant professor at EPFL in 1994 and full professor in 1997. In summer 1996, he was visiting professor at the Tohoku University, Japan. Ph. Renaud is active in several scientific committee (scientific journals, international conferences, scientific advisory boards of companies, PhD thesis committee). He is also co-founder of the Nanotech-Montreux conference. Ph. Renaud is committed to valorization of basic research through his involvement in several high-tech start-up companies.
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Marilyne AndersenMarilyne Andersen est professeure ordinaire en technologies durables de la construction et dirige le Laboratoire Performance Intégrée au Design (LIPID) qu'elle a fondé en automne 2010. Elle a été Doyenne de la Faculté de l'Environnement Naturel, Architectural et Construit (ENAC) de l'EPFL de 2013 à 2018 et est la Directrice Académique du Smart Living Lab à Fribourg. Elle co-dirige également le Student Kreativity and Innovation Laboratory (SKIL) à l'ENAC.Avant de rejoindre l'EPFL, elle était professeure assistante puis associée (tenure-track) dans le Building Technology Group du MIT, au sein du Département d'Architecture, où elle a fondé et dirigé le MIT Daylighting Lab depuis 2004. Elle a aussi été professeure invitée à la Singapore University of Technology and Design en 2019. Marilyne Andersen détient un Master ès sciences en physique et s'est spécialisée dans l'éclairage naturel durant sa thèse dans la physique du bâtiment à l'EPFL au Laboratoire d'énergie solaire et de physique du bâtiment (LESO) ainsi qu'en tant que chercheuse invitée au Building Technologies Department du Lawrence Berkeley National Laboratory en Californie. Ses recherches se situent à l'interface entre sciences, ingénierie et architecture avec une attention spécifique sur l'impact de la lumière naturelle sur les occupants d'un bâtiment. Avec un focus sur les questions de confort, de perception et de santé et leurs implications énergétiques, ces efforts de recherche visent à une intégration plus profonde de la performance lumineuse et du confort intérieur dans le processus de conception, grâce à de nouvelles synergies avec d'autres domaines scientifiques, comme la chronobiologie et les neurosciences ainsi que la psychophysique ou l'informatique et l'imagerie digitale. Elle s'appuie sur ces recherches pour les étendre à la pratique architecturale à travers la startup OCULIGHT dynamics qu'elle a co-fondée, et qui offre des services spécialisés en éclairage naturel avec un accent particulier sur les effets psycho-physiologiques de la lumière naturelle sur les occupants d'un bâtiment. Elle est l'auteure de plus de 200 articles référés publiés dans des revues scientifiques et lors de conférences internationales, ainsi que la lauréate de plusieurs bourses et prix dont: le Daylight Award for Research (2016), onze prix et distinctions pour ses publications (2009, 2011, 2012, 2015, 2018, 2019, 2021) dont le Taylor Technical Talent Award 2009 décerné par la Illuminating Engineering Society, le 3M Non-Tenured Faculty Award (2009), le Mitsui Career Development Professorship au MIT (2008) et le prix EPFL de la Fondation Chorafas en durabilité attribué pour sa thèse (2005). Ses travaux de recherche ou d'enseignement ont été soutenus par des organisations professionnelles, institutionnelles et industrielles tels que les Fonds National pour la Recherche Scientifique (en Suisse et aux USA), la fondation Velux, le programme Européen Horizon 2020, la Boston Society of Architects, la MIT Energy Initiative et InnoSuisse. Elle a été la directrice et responsable académique de l'équipe suisse et son projet NeighborHub, qui a gagné la compétition U.S. Solar Decathlon 2017 avec 8 podiums sur 10 épreuves. Elle est membre du Conseil de la Fondation LafargeHolcim pour la construction durable et dirige son Comité Académique. Elle est également membre du conseil éditorial de la revue scientifique Building and Environment chez Elsevier ainsi que des revues LEUKOS (de la Illuminating Engineering Society) et Buildings and Cities chez Taylor et Francis. Elle est Experte pour le Conseil d'Innovation InnoSuisse ainsi que membre fondatrice et membre du Conseil de la Fondation Culture du Bâti (CUB). Elle est aussi membre fondatrice de la Daylight Academy et membre active de plusieurs comités de l'Illuminating Engineering Society (IES) et de la Commission Internationale de l'Eclairage (CIE).
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Christian DepeursingeChristian Depeursinge is the leader of the Microvision and Micro-Diagnostics (MVD) group at the Advanced Photonics Laboratory of the Institute of Microengineering at EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland (http://apl.epfl.ch/muvision). His research and expertise in biomedical engineering and optics is internationally acknowledged. His current research topics include coherent and incoherent Imaging applied to diagnostics in biology, His research group pioneered in the development of DHM technology. He worked on several projects developed in cooperation with European and international partners. He is author and co-author of over 100 papers published in peer reviewed journals, several book chapters and more than 30 patents. He has given more than 20 invited lectures and plenaries in the last five years. He developed many projects in cooperation with national and international industries. He is co-founder of a start-up company (Lyncée Tec SA: www.Lynceetec.com). He is currently teaching at EPFL and occasionally in foreign universities and institutes. Jean-Pierre HubauxJean-Pierre Hubaux is a full professor at EPFL and head of the Laboratory for Data Security. Through his research, he contributes to laying the foundations and developing the tools for protecting privacy in today’s hyper-connected world. He has pioneered the areas of privacy and security in mobile/wireless networks and in personalized health. He is the academic director of the Center for Digital Trust (C4DT). He leads the Data Protection in Personalized Health (DPPH) project funded by the ETH Council and is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics and Health (GA4GH). From 2008 to 2019 he was one of the seven commissioners of the Swiss FCC. He is a Fellow of both IEEE (2008) and ACM (2010). Recent awards: two of his papers obtained distinctions at the IEEE Symposium on Security and Privacy in 2015 and 2018. He is among the most cited researchers in privacy protection and in information security. Spoken languages: French, English, German, Italian
Serge VaudenaySerge Vaudenay entered at the Ecole Normale Supérieure in 1989 with a major in mathematics. He earned his agrégation (secondary teaching degree) in mathematics in 1992, then a PhD in Computer Science at the University of Paris 7 - Denis Diderot in 1995. He subsequently became a senior research fellow at the CNRS, prior to being granted his habilitation à diriger des recherches (a postdoctoral degree authorizing the recipient to supervise doctoral students). In 1999, he was appointed as a Professor at the EPFL, where he created the Security and Cryptography Laboratory.