Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.
Alfio QuarteroniOf italian nationality, Alfio Quarteroni was born on May 30th 1952. He pursued his studies in mathematics at University of Pavia and at University of Paris VI. In 1986 he was nominated full professor at Catholic University of Brescia, later professor in mathematics at University of Minnesota at Minneapolis and professor in numerical analysis at Politecnico di Milano. He is designated full professor in 1997 and enters into service with EPFL in 1998. At EPFL, he teaches numerical analysis to engineers and mathematicians and holds specialized courses about mathematical modelling and scientific computing for master and PhD students. He had been scientific director of CRS4, plenary speaker of more than two hundred international conferences; he is member of the European Academy of Sciences, the Italian Academy of Sciences, the Lombard Academy of Science and Letters. He is Editor in Chief of two book series (MS&A and Unitext) by Springer, associate editor of 25 international journals. He has been plenary speaker at the International Congress of Mathematicians ICM2006. He had been responsible of several European research networks. His team has carried out the aerodynamic and hydrodynamic simulations for the optimization of Alinghi, the Swiss sailing yacht that has won two editions of the America's Cup in 2003 and 2007.
Fabien Sorin Sep 2002-Oct 2007
Ph.D., Department of Materials Science and Engineering, MIT, USA.
Supervisor: Prof. Yoel Fink; Thesis: Multi-material, Multifunctional Fiber Devices.
After graduating with an engineering degree and a Master of Science in Physics from the Ecole Polytechnique in Palaiseau, France, Prof. Sorin joined the department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT) in Cambridge, USA for his graduate studies. He worked as a research assistant in the Photonic Bandgap Fibers and Devices Group of Professor Yoel Fink and graduated with a PhD in 2008. His PhD thesis led to the development of a new class of fiber material and devices and he was a pioneer of the field of multi-material fibers.
Mar 2008-Oct 2010
Postdoctoral Associate and Research Scientist, Research Laboratory of Electronics, MIT.
He then joined the Research Laboratory of Electronics at MIT as a Postdoctoral Associate, and continued as a Research Scientist associate, where he conducted independent research in the emerging field of multi-material fibers and was involved and led a variety of projects in fundamental research as well as in collaborations with local start-ups.
Apr 2011 Feb 2013
Research Engineer, Saint-Gobain Recherche, Aubervilliers, France.
Surface du Verre et interface Group
In 2011, prof. Sorin returned to Europe and joined the company Saint-Gobain in the Saint-Gobain Recherche center, its biggest research center located near Paris in France. As a research engineer, he developed a new research thrust investigating new photonic materials and nanostructures for the energy and building industries. In particular, he and colleagues developed innovative processing approaches to deploy photonic nanostructures for light management over large area substrates, for applications in energy harvesting and saving, and for building materials and windows.
Mar 2013 Present
Assistant Professor tenure-track, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Head of the Photonic materials and fibre devices laboratory (FIMAP)
Since March 2013, he is in the department of Materials Science (IMX) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) as an assistant professor tenure-track. He is starting a research group on photonic materials and fiber devices (FIMAP), continuing on developing innovative materials processing approaches and photonic device architectures to develop new solutions in energy harvesting, saving and storage, in sensing and monitoring, health care and smart fabrics.
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Philippe GilletPhilippe GILLET est entré à lEcole normale supérieure de la rue dUlm (Paris) pour y mener des études en sciences de la Terre. En 1983, il obtient un PhD en géophysique à luniversité de Paris VII et rejoint luniversité de Rennes I comme assistant. En 1988, titulaire dun doctorat dEtat, il devient professeur dans cette même université et la quitte en 1992 pour rejoindre Ecole normale supérieure de Lyon.
La formation des chaînes de montagnes, et des Alpes en particuliers, est lobjet de la première partie de sa carrière scientifique. En parallèle, il développe des techniques expérimentales (cellules à enclumes de diamants)qui permettent de simuler en laboratoire les conditions de pression et de température qui règnent au sein des planètes. Lobjectif de ces expériences est de comprendre de quels matériaux sont constituées les profondeurs inatteignables des planètes du système solaire.
En 1997, il commence à travailler sur la matière extraterrestre. Il participe à la description de météorites venant de Mars, de la Lune ou de planètes aujourdhui disparues et explique comment celles-ci ont été expulsées de leur planète dorigine par des chocs titanesques avant darriver sur Terre. Il a aussi participé au programme STARDUST de la NASA et contribué à lidentification de grains de comète ramenés sur Terre après avoir été capturés au voisinage de la comète Wild-II. Ces grains représentent les premiers minéraux de notre système solaire, formés il y a plus de 4,5 milliards dannées. Il a aussi travaillé sur les sujets suivants :
interactions entre bacteries et minéraux;
amorphisation sous pression;
techniques expérimentales: cellule à enclumes de diamant, spectroscopie Raman,diffraction des RX sur source synchrotron, microscopie électronique.
Philippe Gillet a aussi une activité de management de la science et de lenseignement. Il a ainsi dirigé lInstitut National des Sciences de lUnivers du CNRS (France), présidé le synchrotron français SOLEIL, lAgence Nationale de la Recherche française(2007) et lEcole normale supérieure de Lyon. Avant de rejoindre lEPFL il a été le directeur de cabinet du Ministre français de la Recherche et de lEnseignement Supérieur.
Quelques publications :
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
Giorgio MargaritondoDe nationalité américaine et suisse, Giorgio Margaritondo est né à Rome (Italie) en 1946. Il a reçu la Laurea cum laude en physique de l'Université de Rome en 1969. De 1969 à 1978, il a travaillé pour le Consiglio Nazionale delle Ricerche (CNR), à Rome, à Frascati et, pendant la période 1975-1977, chez Bell Laboratories aux Etats-Unis. De 1978 à 1990, il est professeur de physique à l'Université du Wisconsin, à Madison (Etats-Unis); en 1984, il est nommé vice-directeur au Centre de rayonnement synchrotron de la même université. En 1990, il est engagé à l'EPFL comme professeur ordinaire et dirige l'Institut de physique appliquée au Département de physique. Il a été également membre honoraire du corps professoral de l'Université Vanderbilt à Nashville. En 2001 il a été nommé doyen de la Faculté des sciences de base de l'EPFL; en 2004, il a été nommé Vice-président pour les affaires académiques.; en 2010 et jusqu'à sa retraite de l'EPFL en 2016 il est devenu Doyen de la formation continue. A côté de ses cours de physique générale, son activité de recherche porte sur la physique des semiconducteurs et des supraconducteurs (états électroniques, surfaces, interfaces) et des systèmes biologiques; ses principales méthodes expérimentales sont la spectroscopie et la spectromicroscopie électroniques, l'imagerie aux rayons x et la microscopie SNOM, y compris les expériences avec le rayonnement synchrotron et le laser à électrons libres. Auteur d'environ 700 articles scientifiques et de 9 livres, il a aussi été responsable de 1995 à 1998 des programmes scientifiques du Synchrotron ELETTRA à Trieste. Depuis 1997, il a été le coordinateur de la table ronde de la Commission européenne pour le rayonnement synchrotron, et président du conseil de la "Integrated Initiative" de la Commission européenne pour les synchrotrons et les lasers à électrons libres (IA-SFS, ensuite ELISA), le plus grand réseau au monde de laboratoires dans ce domaine. En 2011-2015, il a été Editor-in-Chief du Journal of Physics D (Applied Physics). A présent, il est vice-président du conseil de l'Università della Svizzera Italiana (USI) et président du Scientific and Technological Committee de l'Istituto Italiano di Tecnologia (IIT). Il est "Fellow" de l'American Physical Society et de l'American Vacuum Society; il est également "Fellow and Chartered Physicist" de l'Institute of Physics.
Stefano MischlerStefano Mischler obtained the diploma in materials science in 1983 at the Swiss Federal Institute of Technology ETHZ in Zurich. He accomplished his PhD thesis in the field of surface analysis and corrosion at the Materials department of the Swiss Federal Institute of Technology EPFL in Lausanne in 1988. In the years 1989-1990 he held a postdoctoral position at the United Kingdom Atomic Energy Establishment in Harwell (Oxfordshire) where he developed novel quantification procedures for Auger Electron Spectroscopy and high lateral resolution surface analytical methods for fiber reinforced ceramics. In 1991 he joined the newly created Tribology group at the Laboratory for Metallurgical Chemistry of the EPFL where he developed research activities in the field of wear-corrosion interactions (tribocorrosion) and of tribological coatings. He is currently head of the tribology group and is developing a reserach and training activity devoted to modern aspects of tribology and surface science and technology, including surface chemical effects in tribology, biotribology and biocorrosion, tribology in microfabrication processes and wear protection methods. In 2006 he spent a sabbatical leave of 3 months at the Tokyo Medical and Dental University, Institute of Biomaterials.
Mohammad Khaja NazeeruddinDr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. He joined as a Lecturer in Deccan College of Engineering and Technology, Osmania University in 1986, and subsequently, moved to Central Salt and Marine Chemicals Research Institute, Bhavnagar, as a Research Associate. He was awarded the Government of Indias fellowship in 1987 for study abroad. After one year postdoctoral stay with Prof. Graetzel at Swiss federal institute of technology Lausanne (E P F L), he joined the same institute as a Senior Scientist. His current research focuses on Dye-sensitized solar cells, Hydrogen production, Light-emitting diodes and Chemical sensors. He has published more than 380 peer-reviewed papers, ten book chapters, and inventor of 40 patents. The high impact of his work has been recognized with invitations to speak at over 80 international conferences, including the MRS Fall (USA, 2006) and Spring 2011 Meetings, GORDON conference (2014), and has been nominated to the OLLA International Scientific Advisory Board. He appeared in the ISI listing of most cited chemists, and has more than 33'500 citations with an h-index of 89. He is teaching "Functional Materials" course at EPFL, and Korea University; directing, and managing several industrial, national, and European Union projects on Hydrogen energy, Photovoltaics (DSC), and Organic Light Emitting Diodes. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor by the Korea University, Jochiwon, Korea (http://dses.korea.ac.kr/eng/sub01_06_2.htm) and Adjunct Professor by the King Abdulaziz University, Jeddah, Saudi Arabia.