Chromodynamique quantiqueLa chromodynamique quantique (en abrégé CDQ ou QCD, ce dernier de l'anglais Quantum ChromoDynamics) est une théorie physique qui décrit l’interaction forte, l’une des quatre forces fondamentales, qui permet de comprendre les interactions entre les quarks et les gluons et, au passage, la cohésion du noyau atomique. Elle fut proposée en 1973 par H. David Politzer, Frank Wilczek et David Gross pour comprendre la structure des hadrons (c'est-à-dire d'une part les baryons comme les protons, neutrons et particules similaires, et d'autre part les mésons).
Event (particle physics)In particle physics, an event refers to the results just after a fundamental interaction takes place between subatomic particles, occurring in a very short time span, at a well-localized region of space. Because of the uncertainty principle, an event in particle physics does not have quite the same meaning as it does in the theory of relativity, in which an "event" is a point in spacetime which can be known exactly, i.e., a spacetime coordinate.
Problème des neutrinos solairesLe problème des neutrinos solaires est apparu récemment avec la création de structures permettant la détection des neutrinos, et en particulier Super-Kamiokande dans les années 1990 au Japon. Il provient d'une quantité trop faible de neutrinos détectés par rapport à la valeur théorique. Des notions de physique quantique sont nécessaires pour comprendre ce problème. Les neutrinos et antineutrinos sont des particules élémentaires de masse très faible (elle était souvent supposée nulle au début des recherches), introduits dans la théorie de la physique quantique pour assurer la conservation de l'énergie dans les processus de réaction nucléaire.
Pentaquarkvignette|Schéma d'un pentaquark générique : quatre quarks et un antiquark (en jaune). Un pentaquark est une particule subatomique composée de cinq quarks qui a été prévue par les théoriciens en 1997. La recherche des pentaquarks (et des tétraquarks) est devenue un sujet d’étude à part entière en physique expérimentale, et plusieurs pentaquarks ont été produits au LHC, de type cqqq. L'existence des pentaquarks fut prédite initialement par Maxim Polyakov, et Victor Petrov de l' en 1997 ; mais leur théorie fut accueillie avec scepticisme.
Flavor-changing neutral currentIn particle physics, flavor-changing neutral currents or flavour-changing neutral currents (FCNCs) are hypothetical interactions that change the flavor of a fermion without altering its electric charge. If they occur in nature (as reflected by Lagrangian interaction terms), these processes may induce phenomena that have not yet been observed in experiment. Flavor-changing neutral currents may occur in the Standard Model beyond the tree level, but they are highly suppressed by the GIM mechanism.
Accélérateur linéairethumb|upright=1.8|Diagramme animé montrant le fonctionnement d'un accélérateur linéaire thumb|Partie d'un accélérateur linéaire situé à Clayton, Victoria, Australie. Un accélérateur linéaire est un dispositif permettant d'accélérer des particules chargées afin de leur fournir une énergie cinétique importante dans le but de produire des réactions avec la matière. Les particules accélérées peuvent être des électrons, des protons, ou bien des ions lourds.
Interaction fortethumb|250px|alt=Représentation des quarks dans un proton : deux quarks Up et un quark Down, chacun d'un couleur différente, liés par l'interaction forte.|L'interaction forte lie les quarks dans les nucléons, ici dans un proton. L'interaction forte, ou force forte, appelée parfois force de couleur, ou interaction nucléaire forte, est l'une des trois interactions entre particules élémentaires de la matière dans le modèle standard aux côtés de l'interaction électromagnétique et de l'interaction faible.
Code de KitaevLe code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore. Pour le code de Kitaev, il existe 2 types de stabilisateurs, les stabilisateurs de plaquettes et de sites. On peut interpréter ce code comme étant un ensemble de spin-1/2 (qubits physiques) placés sur chaque arête d'un réseau carré 2D.
Scalar bosonA scalar boson is a boson whose spin equals zero. A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin. Scalar bosons are the subset of bosons with zero-valued spin. The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).
Méson rhoLe méson rho est un méson, une particule de la physique des particules. Le méson rho est un triplet isospin dont les trois états sont notés ρ+, ρ0 et ρ− (suivant la valeur de leur charge électrique). Après les pions et les kaons, les mésons rho sont les mésons les plus légers avec une masse d'environ 776 MeV.c-2 pour les trois états ; il existe une légère différence de masse entre le ρ+ et ρ0, estimée expérimentalement à moins de 0,7 MeV.c-2.