Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Patrick Daniel BarthProfessor Patrick Barth is Associate Professor at EPFL and Adjunct Associate Professor at Baylor College of Medicine, Houston, TX, USA. He received training in Physics, Chemistry and Biology (University of Paris, ENS) in France and performed his PhD at the Commissiariat a l'Energie Atomique in Saclay, France on structure/function studies of membrane proteins (photosystem I) using biochemical and biophysical experimental techniques. He carried out postdoctoral studies at University of California at Berkeley with Tom Alber on computational development for calculating protein electrostatics and designing de novo selective peptide inhibitors of cellular protein interactions. He then went to the University of Washington as a postdoctoral fellow and instructor in David Baker's laboratory to develop computational techniques in the software Rosetta for predicting and designing membrane protein structures. He started his independent career and received tenure at Baylor College of Medicine. He will continue at EPFL to marry computation and experiment for understanding the molecular determinants of signal transduction, as well as modeling and designing membrane proteins with novel functions for various synthetic biology and therapeutic applications.
Florian Frédéric Vincent BreiderFlorian Breider obtained his PhD in the field of the stable isotope biogeochemistry from the University of Neuchatel in 2013. This was followed by seven months of postdoc at EPFL in the Atmospheric Particles Research Laboratory and two years as research associate at Tokyo Institute of Technology (Japan) where he conducted studies on nitrous oxide biogeochemistry in oceans. From 2015 to 2018, he was research scientist in the Laboratory for Water Quality and Treatment at EPFL where he conducted research on disinfection by-products and antibiotic resistant bacteria. Since May 2018, he is director of the Central Environmental Laboratory at the Institute of Environmental Engineering of EPFL.
Jan Van HerleNé à Anvers, Belgique, 1966. En Suisse depuis 1983. Naturalisé Suisse en 2004 par persuasion de la culture suisse démocratique et participative 'bottom-up'. Pas de double nationalité. Conseiller communal durant 2 mandats de 5 ans de 2006 à 2016.
1987 : Chimiste de l'Université de Bâle (CH).
1988 : Post-grade informatique de l'Ecole d'Ingénieurs de Bâle.
1989 : Stage industriel chez ABB à Baden (CH).
1990-1993 : Thesè EPFL
1994-1995 : Postdoc au Japon (Tokyo).
1996-2000 : Chercheur à l'EPFL, Dpt. Chimie, responsable de groupe.
1998-2000 : Master en Energy Technology, EPFL.
2000 : Cofondateur de HTceramix SA (EPFL spin-off), à Yverdon (actuellement 12 employés). La maison mère SOLIDpower en Italie, qui a acheté notre technologie en 2007, emploie 250 personnes et a levé 70 MCHF.
2000-2012 : 1er Assistant et chargé de cours en STI-IGM. Promu à MER en 2008.
2013-présent: MER responsable d'unité.
Output : 135 publications, 120 papiers de conférence, 15 théses de doctorat, 4 thèses en cours, 37 thèses de master. Facteur h-42, >5000 citations.
Fonds levés jusqu'à présent >19 MCHF.
5 langues couramment (néerlandais, français, allemand (y.c. suisse-allemand), anglais, espagnol).
David Andrew BarryResearch InterestsSubsurface hydrology, constructed wetlands, ecological engineering, in particular contaminant transport and remediation of soil and groundwater; more generally, models of hydrological and vadose zone processes; application of mathematical methods to hydrological processes; coastal zone sediment transport, aquifer-coastal ocean interactions; hydrodynamics and modelling of lakes.