Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Over the past few decades, nanostructures have garnered significant attention due to their potential for embodying new physical paradigms and delivering cutting-edge technological applications. Dimensionality strongly affects the vibrational, electron-phon ...
We employ the Dirac-Frenkel variational principle and the multiple Davydov ansatz to study time-dependent fluorescence spectra of a driven qubit in the weak to strong qubit-reservoir coupling regimes, where both the Rabi frequency and the spontaneous decay ...
Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A(1g) phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflections ...
The atomic motion controls important properties of materials, such as thermal transport, phase transitions, and vibrational spectra. However, simulating the ionic dynamics is exceptionally challenging when quantum fluctuations are relevant (e.g., at low te ...
We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to co ...
The dynamics of acoustic vibrations in terahertz quantum cascade laser structures (THz-QCLs) is studied by means of femtosecond pump-probe spectroscopy. The phonon modes are characterized by the folding of the acoustic dispersion into an effective reduced ...
The time-resolved physical spectrum of luminescence is theoretically studied for a standard cavity quantum electrodynamics system. In contrast to the power spectrum for the steady state, the correlation functions up to the present time are crucial for the ...
Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, ...
We use first-principles calculations, at the density-functional-theory (DFT) and GW levels, to study both the electron-phonon interaction for acoustic phonons and the "synthetic" vector potential induced by a strain deformation (responsible for an effectiv ...
We apply grazing-incidence femtosecond x-ray diffraction to investigate the details of the atomic motion connected with a displacively excited coherent optical phonon. We concentrate on the low frequency phonon associated with the charge and orbital order ...