Simon Nessim HeneinSimon Henein obtient son diplôme d’ingénieur en microtechnique de l’Ecole Polytechnique Fédérale de Lausanne (EPFL) en 1996, puis le titre de docteur ès sciences techniques de cette même institution en 2000. En 2001 il publie un livre intitulé « Conception des guidages flexibles » qui devient une référence dans le monde de la conception micromécanique. Ce livre sera traduit en anglais et complété dans un ouvrage collectif intitulé "The art of flexure mechanism design" publié en 2017.Simon Henein s’engage ensuite professionnellement au Centre Suisse d’Electronique et Microtechnique (CSEM) où il conçoit et développe des mécanismes dédiés à des applications robotiques, spatiales, astrophysique, biomédicales et horlogères, ainsi qu’à l’Institut Paul Scherrer où il développe des instruments pour le synchrotron suisse SLS. Depuis le 1er novembre 2012, il est professeur associé en microtechnique à l’EPFL et directeur du Laboratoire de conception micromécanique et horlogère (Instant-Lab). De 2020 à 2021 il effectue un congé de recherche en tant que professeur invité au Centre d'études théâtrales de l'Université de Lausanne (faculté des lettres).
Wenzel Alban JakobI am an assistant professor leading the Realistic Graphics Lab at EPFL's School of Computer and Communication Sciences. I completed my Ph.D. at the Department of Computer Science at Cornell University, where I was advised by Steve Marschner. Before coming to EPFL, I was a Marie Curie postdoctoral fellow at ETH Zürich's Interactive Geometry Lab where I worked with Olga Sorkine-Hornung.
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Jamie PaikProf. Jamie Paik is founder and director of the Reconfigurable Robotics Lab (RRL) of Swiss Federal Institute of Technology (EPFL) and a core member of Swiss NCCR robotics group. The RRL leverages expertise in multi-material fabrication and smart material actuation for novel robot designs. She received her PhD in Seoul National University on designing humanoid arm and a hand while being sponsored by Samsung Electronics. This 7-DoF humanoid arm was the lightest in the literature at that time being 3.7kg including the 8-DoF hand. During her Postdoctoral positions in the Institut des Systems Intelligents et de Robotic in Universitat Pierre Marie Curie, Paris VI, she developed laparoscopic tools named JAiMY that are internationally patented and commercialized now by Endocontrol-medical.com. At Harvard University’s Microrobotics Laboratory, she started developing unconventional robots that push the physical limits of material and mechanisms. Her latest research effort is in soft robotics including self-morphing Robogami (robotic origami) that transforms its planar shape to 2D or 3D by folding in predefined patterns and sequences, just like the paper art, origami.
Alcherio MartinoliI received my Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ), and a Ph.D. in Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). I am currently an Associate Professor at the School of Architecture, Civil, and Environmental Engineering and the head of the Distributed Intelligent Systems and Algorithms Laboratory. Before joining EPFL I carried out research activities at the Institute of Biomedical Engineering of the ETHZ, at the Institute of Industrial Automation of the Spanish Research Council in Madrid, Spain, and at the California Institute of Technology, Pasadena, U.S.A. Additional information can be found on my full CV.
Jean-François MolinariProfessor J.F. Molinari is the director of the Computational Solid Mechanics Laboratory (http://lsms.epfl.ch) at EPFL, Switzerland. He holds an appointment in the Civil Engineering institute, which he directed from 2013 to 2017, and a joint appointment in the Materials Science institute. He started his tenure at EPFL in 2007, and was promoted to Full Professor in 2012. He is currently an elected member of the Research Council of the Swiss National Science Foundation in Division 2 (Mathematics, Natural and Engineering Sciences), and co editor in chief of the journal Mechanics of Materials. J.F. Molinari graduated from Caltech, USA, in 2001, with a M.S. and Ph.D. in Aeronautics. He held professorships in several countries besides Switzerland, including the United States with a position in Mechanical Engineering at the Johns Hopkins University (2000-2006), and France at Ecole Normale Supérieure Cachan in Mechanics (2005-2007), as well as a Teaching Associate position at the Ecole Polytechnique de Paris (2006-2009). The work conducted by Prof. Molinari and his collaborators takes place at the frontier between traditional disciplines and covers several length scales from atomistic to macroscopic scales. Over the years, Professor Molinari and his group have been developing novel multiscale approaches for a seamless coupling across scales. The activities of the laboratory span the domains of damage mechanics of materials and structures, nano- and microstructural mechanical properties, and tribology. Fabien Sorin Sep 2002-Oct 2007
Ph.D., Department of Materials Science and Engineering, MIT, USA.
Supervisor: Prof. Yoel Fink; Thesis: Multi-material, Multifunctional Fiber Devices.
After graduating with an engineering degree and a Master of Science in Physics from the Ecole Polytechnique in Palaiseau, France, Prof. Sorin joined the department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT) in Cambridge, USA for his graduate studies. He worked as a research assistant in the Photonic Bandgap Fibers and Devices Group of Professor Yoel Fink and graduated with a PhD in 2008. His PhD thesis led to the development of a new class of fiber material and devices and he was a pioneer of the field of multi-material fibers.
Mar 2008-Oct 2010
Postdoctoral Associate and Research Scientist, Research Laboratory of Electronics, MIT.
He then joined the Research Laboratory of Electronics at MIT as a Postdoctoral Associate, and continued as a Research Scientist associate, where he conducted independent research in the emerging field of multi-material fibers and was involved and led a variety of projects in fundamental research as well as in collaborations with local start-ups.
Apr 2011 Feb 2013
Research Engineer, Saint-Gobain Recherche, Aubervilliers, France.
Surface du Verre et interface Group
In 2011, prof. Sorin returned to Europe and joined the company Saint-Gobain in the Saint-Gobain Recherche center, its biggest research center located near Paris in France. As a research engineer, he developed a new research thrust investigating new photonic materials and nanostructures for the energy and building industries. In particular, he and colleagues developed innovative processing approaches to deploy photonic nanostructures for light management over large area substrates, for applications in energy harvesting and saving, and for building materials and windows.
Mar 2013 Present
Assistant Professor tenure-track, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Head of the Photonic materials and fibre devices laboratory (FIMAP)
Since March 2013, he is in the department of Materials Science (IMX) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) as an assistant professor tenure-track. He is starting a research group on photonic materials and fiber devices (FIMAP), continuing on developing innovative materials processing approaches and photonic device architectures to develop new solutions in energy harvesting, saving and storage, in sensing and monitoring, health care and smart fabrics.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.