Lenka ZdeborováLenka Zdeborová is a Professor of Physics and of Computer Science in École Polytechnique Fédérale de Lausanne where she leads the Statistical Physics of Computation Laboratory. She received a PhD in physics from University Paris-Sud and from Charles University in Prague in 2008. She spent two years in the Los Alamos National Laboratory as the Director's Postdoctoral Fellow. Between 2010 and 2020 she was a researcher at CNRS working in the Institute of Theoretical Physics in CEA Saclay, France. In 2014, she was awarded the CNRS bronze medal, in 2016 Philippe Meyer prize in theoretical physics and an ERC Starting Grant, in 2018 the Irène Joliot-Curie prize, in 2021 the Gibbs lectureship of AMS. She is an editorial board member for Journal of Physics A, Physical Review E, Physical Review X, SIMODS, Machine Learning: Science and Technology, and Information and Inference. Lenka's expertise is in applications of concepts from statistical physics, such as advanced mean field methods, replica method and related message-passing algorithms, to problems in machine learning, signal processing, inference and optimization. She enjoys erasing the boundaries between theoretical physics, mathematics and computer science.
Anne-Marie KermarrecAnne-Marie Kermarrec is Professor at EPFL since January 2020. Before that she was the CEO of the Mediego startup that she founded in April 2015. Mediego provides content personalization services for online publishers. She was a Research Director at Inria, France from 2004 to 2015. She got a Ph.D. thesis from University of Rennes (France), and has been with Vrije Universiteit, NL and Microsoft Research Cambridge, UK. Anne-Marie received an ERC grant in 2008 and an ERC Proof of Concept in 2013. She received the Montpetit Award in 2011 and the Innovation Award in 2017 from the French Academy of Science. She has been elected to the European Academy in 2013 and named ACM Fellow in 2016. Her research interests are in large-scale distributed systems, epidemic algorithms, peer to peer networks and system support for machine learning.Google Scholar: https://scholar.google.com/citations?user=aIAy-qcAAAAJDBLP: https://dblp.org/pers/k/Kermarrec:Anne=Marie.html Bruno Emanuel Ferreira De Sousa CorreiaThroughout my PhD and postdoctoral studies I was trained in world-renowned laboratories and institutions in the United States of America (University of Washington and The Scripps Research Institute). Very early in my scientific career I found out my fascination about protein structure and function. My PhD studies evolved in the direction of immunogen design and vaccine engineering which sparked my interest in the many needs and opportunities in vaccinology and translational research. My efforts resulted in an enlightening piece of work where for the first time, computationally designed immunogens elicited potent neutralizing antibodies. During my postdoctoral studies I joined a chemical biology laboratory at the Scripps Research Institute. In this stage I developed novel chemoproteomics methods for the identification of protein-small molecule interaction sites in complex proteomes. In March 2015, I joined the École Polytechnique Fédérale de Lausanne (EPFL) – Switzerland as a tenure track assistant professor. The focus of my research group is to develop computational tools for protein design with particular emphasis in applying these strategies to immunoengineering (e.g. vaccine and cancer immunotherapy). The activities in my laboratory focus on computational design methods development and experimental characterization of the designed proteins. Our laboratory has been awarded with 2 prestigious research grants from the European Research Council. Lastly, I have been awarded the prize for best teacher of Life sciences in 2019.
Serge VaudenaySerge Vaudenay entered at the Ecole Normale Supérieure in 1989 with a major in mathematics. He earned his agrégation (secondary teaching degree) in mathematics in 1992, then a PhD in Computer Science at the University of Paris 7 - Denis Diderot in 1995. He subsequently became a senior research fellow at the CNRS, prior to being granted his habilitation à diriger des recherches (a postdoctoral degree authorizing the recipient to supervise doctoral students). In 1999, he was appointed as a Professor at the EPFL, where he created the Security and Cryptography Laboratory.
Michele CeriottiMichele Ceriotti received his Ph.D. in Physics from ETH Zürich in 2010. He spent three years in Oxford as a Junior Research Fellow at Merton College. Since 2013 he leads the laboratory for Computational Science and Modeling in the Institute of Materials at EPFL. His research revolves around the atomic-scale modelling of materials, based on the sampling of quantum and thermal fluctuations and on the use of machine learning to predict and rationalize structure-property relations. He has been awarded the IBM Research Forschungspreis in 2010, the Volker Heine Young Investigator Award in 2013, an ERC Starting Grant in 2016, and the IUPAP C10 Young Scientist Prize in 2018.
Alexander MathisAlexander studied pure mathematics with a minor in logic and theory of science at the Ludwig Maximilians University in Munich. For his PhD also at LMU, he worked on optimal coding approaches to elucidate the properties of grid cells. As a postdoctoral fellow with Prof. Venkatesh N. Murthy at Harvard University and Prof. Matthias Bethge at Tuebingen AI, he decided to study olfactory behaviors such as odor-guided navigation, social behaviors and the cocktail party problem in mice. During this time, he increasingly got interested sensorimotor behaviors beyond olfaction and started working on proprioception, motor adaption, as well as computer vision tools for measuring animal behavior.
In his group, he is interested in elucidating how the brain gives rise to adaptive behavior. One of the major goals is to synthesize large datasets into computationally useful information. For those purposes, he develops algorithms and systems to analyze animal behavior (e.g. DeepLabCut), neural data, as well as creates experimentally testable computational models.