Entropy as an arrow of timeEntropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from the future. In thermodynamic systems that are not isolated, local entropy can decrease over time, accompanied by a compensating entropy increase in the surroundings; examples include objects undergoing cooling, living systems, and the formation of typical crystals.
Variable d'étatEn thermodynamique, des variables d'état sont des paramètres qui caractérisent l'état d'équilibre d'un système, tels que le volume, la température, la pression et la quantité de matière. Ces caractérisations sont elles-mêmes des fonctions d'état du système. Une variable d'état n'a de sens que pour un système à l'équilibre thermodynamique. Une variable d'état est toujours une grandeur physique scalaire. Il s'agit soit d'une grandeur extensive, définie sur l'ensemble du système considéré, soit d'une grandeur intensive, qui doit alors prendre la même valeur en tout point du système.
Volume massiqueLe volume massique d'un objet, ou volume spécifique, est le quotient de son volume par sa masse. C'est donc l'inverse de sa masse volumique. Il est souvent noté (V minuscule) ou (la lettre minuscule grecque nu), en italique. avec : masse de l'objet ; volume de l'objet ; masse volumique de l'objet. Le volume massique s'exprime en mètres cubes par kilogramme (m/kg) dans le Système international d'unités (en centimètres cubes par gramme (cm/g) dans le système CGS) : = ; = .
Degré CelsiusLe degré Celsius, de symbole °C, est l'unité de l’échelle de température Celsius, qui est une unité dérivée du Système international, introduite le . Son nom est une référence à l'astronome et physicien suédois Anders Celsius, inventeur en 1742 d'une des premières échelles centigrades de température. Cette unité de mesure est d'usage courant à travers le monde, à l'exception des États-Unis, du Belize et des îles Caïmans, qui utilisent encore l'échelle Fahrenheit.
CompressibilitéLa compressibilité est une caractéristique d'un corps quantifiant sa variation relative de volume sous l'effet d'une pression appliquée. La compressibilité est une grandeur intensive homogène avec l'inverse d'une pression, elle s'exprime en (Pa étant le pascal). Cette définition doit être complétée car sous l'effet d'une compression les corps ont tendance à s'échauffer. On définit donc une compressibilité isotherme, pour un corps restant à température constante, et une compressibilité isentropique (ou adiabatique), pour un corps restant à entropie constante.
Particules indiscernablesLes particules indiscernables ou particules identiques sont des particules qui ne peuvent être différenciées l'une de l'autre, même en principe. Ce concept prend tout son sens en mécanique quantique, où les particules n'ont pas de trajectoire bien définie qui permettrait de les distinguer l'une de l'autre. Les particules indiscernables peuvent être soit des particules élémentaires telles que l'électron ou le photon, ou des particules composites - neutron, proton - ayant le même état interne.
Équilibre thermiquevignette|250px|Développement d'un équilibre thermique au cours du temps dans un système isolé composé de deux compartiments initialement à températures différentes et échangeant de la chaleur. En physique, et particulièrement en thermodynamique, léquilibre thermique entre deux corps de températures différentes mis en contact est l'état atteint lorsque ces températures deviennent égales, l'échange d'énergie thermique (chaleur) entre ces deux corps étant alors nul.
Degré Fahrenheitvignette|redresse|Thermomètre à alcool à double échelle de mesure. vignette|100px| et . Le degré Fahrenheit (symbole : °F) est une unité de mesure de la température, proposée par le physicien allemand Daniel Gabriel Fahrenheit en 1724. Historiquement, dans cette échelle, le point zéro était la température de solidification d'un mélange eutectique de chlorure d'ammonium et d'eau, et le était la température du corps humain. Fahrenheit vérifia que le point de solidification de l’eau était de et son point d'ébullition de Fahrenheit.
Conditions normales de température et de pressionLes conditions normales de température et de pression (parfois abrégé CNTP) sont des conditions pratiques, en partie arbitraires, d'expérimentation et de mesure en laboratoire en physique et en chimie. Elles permettent des comparaisons commodes entre résultats expérimentaux. Les conditions les plus usuelles fixent la température normale à () et la pression normale à ( = ), soit la pression atmosphérique moyenne au niveau de la mer. D'autres définitions sont toutefois aussi usitées.
Rendement (physique)En physique, le rendement est défini comme une grandeur sans dimension qui caractérise l'efficacité d'une transformation, physique ou chimique. En physique, la grandeur caractérise généralement la conversion d'une forme d'énergie en une autre. Pour un système réalisant une conversion d'énergie (transformateur, moteur, pompe à chaleur), le rendement est défini par certains auteurs comme étant le rapport entre l'énergie recueillie en sortie et l'énergie fournie en entrée, qui confond alors les termes d'efficacité thermodynamique et de rendement thermodynamique.