Traceur isotopiqueLes traceurs isotopiques sont utilisés en chimie, en hydrochimie, en géologie isotopique et en biochimie afin de mieux comprendre certaines réactions chimiques, interactions ou la cinétique environnementale de certains éléments. Les processus biologiques, physiques et chimiques induisent en effet une répartition différentielle des isotopes légers et lourds, comportement appelé fractionnement isotopique. Le traçage isotopique utilise cette propriété des traceurs isotopiques.
Réaction en chaîne (nucléaire)vignette|redresse=1.3|Schéma d'une réaction en chaîne de fission nucléaire1. Un atome d' absorbe un neutron et se divise en deux nouveaux atomes (produits de fission), relâchant trois nouveaux neutrons et de l'énergie de liaison.2. L'un des neutrons est absorbé par un atome d' et ne continue pas la réaction, un autre neutron est simplement perdu. Cependant, un neutron entre en collision avec un atome d', qui se divise et relâche deux neutrons et de l'énergie de liaison.3.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Modèle atomique de RutherfordLe modèle atomique de Rutherford est un modèle physique proposé en 1911 par Ernest Rutherford pour décrire la structure d'un atome. Ce modèle fait suite au modèle atomique de Thomson (ou « modèle du plum pudding »), proposé en 1904 par Joseph John Thomson (dont Rutherford était l'élève), et qui fut invalidé à la suite de l'expérience de Rutherford ou « expérience de la feuille d'or » en 1909.
AntimatièreEn physique des particules, l'antimatière est l'ensemble des antiparticules qui ont la même masse (la masse d'une antiparticule n'a cependant jamais pu être mesurée en 2018) et le même spin, mais des charges, nombres baryoniques et nombres leptoniques opposés aux particules ordinaires. Il est supposé que l'antimatière n'existe qu'en quantités infimes dans l'Univers local, soit dans les rayons cosmiques, soit produite en laboratoire. Les travaux sur l'antimatière consistent en grande partie à expliquer la rareté de l'antimatière par rapport à la matière.
ThalliumLe thallium, de symbole Tl, est l'élément chimique de numéro atomique 81. Il appartient au groupe 13 du tableau périodique ainsi qu'à la famille des métaux pauvres. Son corps simple est un métal gris argenté, assez mou pour être coupé au couteau. Le thallium est un élément « non essentiel » (il n'a aucune utilité biologique connue), en revanche il est hautement toxique, plus même que le mercure, le plomb et le cadmium. Dans la nature, il est surtout présent sous la forme de sulfures et de silicates, dans certaines roches volcaniques et minerais sulfurés d'autres métaux (fer, plomb, zinc).
CalciumLe calcium est l'élément chimique de numéro atomique 20, de symbole Ca. C'est un métal alcalino-terreux gris-blanc et assez dur. Il n'existe pas à l'état de corps pur dans la nature. C'est le cinquième élément le plus abondant de la croûte terrestre (plus de 3 %). Il est vital pour de nombreuses espèces : formation des os, des dents et des coquilles (il compose 1 à 2 % du poids du corps humain d'un adulte). Le calcium joue également un rôle très important en physiologie cellulaire, tout en étant un poison cellulaire au-delà d'une certaine dose.
Implantation ioniqueL'implantation ionique est un procédé d'ingénierie des matériaux. Comme son nom l'indique, il est utilisé pour implanter les ions d'un matériau dans un autre solide, changeant de ce fait les propriétés physiques de ce solide. L'implantation ionique est utilisée dans la fabrication des dispositifs à semi-conducteurs, pour le traitement de surface des métaux, ainsi que pour la recherche en science des matériaux. Les ions permettent à la fois de changer les propriétés chimiques de la cible, mais également les propriétés structurelles car la structure cristalline de la cible peut être abîmée ou même détruite.
Vallée de stabilitéLa vallée de stabilité désigne, en physique nucléaire, l'endroit où se situent les isotopes stables, quand on porte en abscisse le numéro atomique et en ordonnée le nombre de neutrons de chaque isotope (carte des nucléides - les deux axes sont parfois inversés sur certaines représentations). Certains isotopes sont stables, d'autres ne le sont pas et donnent, après une émission radioactive, naissance à un autre élément qui peut être lui-même sous la forme d'un isotope stable ou radioactif.
MatièreEn physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'espace. Les quatre états les plus communs sont l'état solide, l'état liquide, l'état gazeux et l'état plasma. Réciproquement, en physique, tout ce qui a une masse est de la matière. La matière ordinaire qui nous entoure est formée principalement de baryons et constitue la matière baryonique.