Natural uraniumNatural uranium (NU or Unat) refers to uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from uranium-235, 48.6% from uranium-238, and 49.2% from uranium-234. Natural uranium can be used to fuel both low- and high-power nuclear reactors. Historically, graphite-moderated reactors and heavy water-moderated reactors have been fueled with natural uranium in the pure metal (U) or uranium dioxide (UO2) ceramic forms.
Liquid fluoride thorium reactorThe liquid fluoride thorium reactor (LFTR; often pronounced lifter) is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine. Molten-salt-fueled reactors (MSRs) supply the nuclear fuel mixed into a molten salt.
Commission de réglementation nucléaire des États-UnisLa Commission de réglementation nucléaire des États-Unis (United States Nuclear Regulatory Commission ou NRC), aussi désignée comme l'Autorité de sûreté nucléaire américaine, est l'agence indépendante du gouvernement des États-Unis, fondée par la loi de réorganisation de l'énergie (Energy Reorganization Act) en 1974 et ouverte en 1975, chargée de la réglementation de la sûreté nucléaire aux États-Unis et de son respect.
Capture neutroniqueEn physique nucléaire, la capture neutronique est le processus par lequel un noyau capture un neutron sans se désintégrer (et émet un rayonnement gamma pour évacuer l'énergie en excès). Ils fusionnent pour former un noyau plus lourd. Comme les neutrons n'ont pas de charge électrique, ils peuvent entrer dans un noyau plus facilement que les particules chargées positivement, qui sont repoussées électrostatiquement. La capture de neutrons joue un rôle important dans la nucléosynthèse cosmique des éléments lourds.
Mouvement antinucléairethumb|« Nucléaire ? Non merci ! », Autocollant de 1975 contre l'énergie nucléaire. Le mouvement antinucléaire ou lobby antinucléaire désigne l'ensemble des personnes et organisations (associations, syndicats, partis politiques) qui s'opposent de façon générale (philosophiquement, idéologiquement ou politiquement) à l'utilisation civile ou militaire de l'énergie nucléaire sous quelque forme que ce soit. C'est donc par définition un lobby.
Séparation isotopiqueLa séparation isotopique est le processus qui consiste à augmenter la concentration des isotopes d'un élément chimique. Les noyaux atomiques sont constitués de nucléons : Z protons et N neutrons, soit A=Z+N nucléons en tout. Pour garantir sa neutralité, l’atome doit entourer ce noyau d’un nuage d’exactement Z électrons, puisque proton et électron portent tous deux une charge électrique élémentaire, le premier positive, le second négative. Or les propriétés chimiques de l’atome résultant dépendent essentiellement du nuage électronique, donc de Z.
Matière nucléaire de qualité militaireLes matières nucléaires de qualité militaire sont toutes les matières nucléaires fissiles suffisamment pures pour fabriquer une arme nucléaire ou qui ont des propriétés qui les rendent particulièrement adaptées à l'utilisation d'armes nucléaires. Le plutonium et l'uranium dans les qualités normalement utilisées dans les armes nucléaires sont les exemples les plus courants. (Ces matières nucléaires ont d'autres catégorisations en fonction de leur pureté.) Seuls les isotopes fissiles de certains éléments peuvent être utilisés dans les armes nucléaires.
Masse critique (réaction nucléaire)vignette|Louis Slotin, "titillant la queue du dragon" en 1946 dans le laboratoire de Los Alamos La masse critique de matière fissile est la masse minimale de matière suffisant au déclenchement d'une réaction de fission nucléaire en chaîne (voir aussi : fission nucléaire). Elle dépend des propriétés nucléaires du matériau considéré (section efficace de fission, et nombre de neutrons produits par la fission), mais aussi de ses propriétés physiques (en particulier de sa densité), de sa forme et de sa pureté.
Plutonium 238Le plutonium 238, noté Pu, est l'isotope du plutonium dont le nombre de masse est égal à 238 : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Un gramme de présente une radioactivité α de . Durant les années 1960 et 1970, les scientifiques du Laboratoire américain de Los Alamos ont mis au point une utilisation du pour fournir l'énergie nécessaire à des pacemakers.
Réacteur nucléaire à très haute températureLe réacteur nucléaire à très haute température, VHTR (Very High Temperature Reactor) ou réacteur nucléaire à haute température, HTGR (High Temperature Gas-cooled Reactor) fait partie des six types de réacteurs sur lesquels le Forum international Génération IV porte ses efforts de recherche. Il a été choisi pour son rendement proche de 50 % et sa capacité à produire du dihydrogène sans émission de dioxyde de carbone (voir Cycle soufre-iode).