Sophie LufkinFORMATION
2010 - Thèse de doctorat au sein de l'EDAR (Ecole doctorale Architecture, Ville, Histoire) sur la densification des friches ferroviaires, co-dirigée par les Prof. Inès Lamunière et Vincent Kaufmann
2005 - "Master of Art" en architecture, sous la direction des Prof. Patrick BERGER et Inès LAMUNIERE
2003 - Année d'échange à l'ETHZ
1999 - Entrée à l'EPFL, section architecture
1998 - Maturité type B, Collège Claparède, Genève
EXPERIENCE PROFESSIONNELLE
2010 - Architecte, Cheffe de projet chez LAR - Fernando Romero, México
2006 - Assistante de recherche à lEPFL au Laboratoire darchitecture et mobilité urbaine (LAMU), projet de recherche PNR54 "Densification des friches ferroviaires"
2005 - Architecte chez Devanthéry & Lamunière, Genève
2004 - Stage darchitecture, Eric Maria, Genève
2003 - Stage darchitecture, Sumi & Burkhalter, Zurich
2001 - Stage darchitecture, Devanthéry & Lamunière, Genève
RECOMPENSES ET BOURSES
2001 - Prix SIA Vaudoise pour le projet "Fondation Ella Maillart à Chandolin"
2005 - Prix de l'Association des diplômes A3-EPFL
2008 - Bourse Erna Hamburger
LANGUES
Français (maternelle), allemand et anglais (courantes), portugais (notions)
Dusan LicinaDusan Licina is a Tenure Track Assistant Professor of Indoor Environmental Quality at the School for Architecture, Civil, and Environmental Engineering (ENAC) at EPFL. He leads the Human-Oriented Built Environment Lab (HOBEL) in Fribourg since 1 June 2018. Dusan’s research and teaching are driven by the need to advance knowledge of the intersections between people and the built environment in order to ensure high indoor environmental quality for building occupants with minimum energy input. His research group specializes in air quality engineering, focusing on understanding of concentrations, dynamics and fates of air pollutants within buildings, and development and application of methods to quantitatively describe relationships between air pollution sources and consequent human exposures. His research interests also encompass optimization of building ventilation systems with an aim to improve air quality and thermal comfort in an energy-efficient manner. Throughout his career, Dusan specialized in air quality engineering, focusing on sources and transport of air pollutants in buildings, human exposure assessment, and optimization of building ventilation systems with an aim to improve air quality. Dusan completed my joint Doctorate degree at the National University of Singapore and Technical University of Denmark. He was formerly master and bachelor student in Mechanical Engineering at the University of Belgrade, Serbia. Prior to joining EPFL, Dusan worked for 3.5 years in the USA, first he was a postdoctoral researcher at the University of California Berkeley, and then he served as director on the standard development team at International WELL Building Institute (IWBI) in New York. Dusan is the recipient of several honors and awards, including Ralph G. Nevin’s award by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) given in recognition of significant accomplishment in the study of human response to the environment. He is editorial board member of the highly acclaimed Indoor Air journal. He is passionate about raising awareness about the air quality issues worldwide and developing buildings that are not only energy efficient, but that also contribute to “Michelin Star” indoor air quality.
John Richard ThomeJohn R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.