Paolo De Los RiosPaolo De Los Rios earned his master in Electronic Engineering at the Turin Institute of Technology (Politecnico di Torino) in May 1993. In November 1993 he moved to Trieste, Italy, to enter the PhD program in Theoretical Condensed Matter Theory at the International School for Advanced Studies (SISSA/ISAS) where he obtained the PhD degree in October 1996 for his work on the statistical physics of disordered systems. After a one year postdoc at the Max-Planck Institute for the Physics of Complex Systems in Dresden, Germany, in November 1997 he moved to the University of Fribourg, Switzerland, to join the group of Prof. Yi-Cheng Zhang. There he has worked on various applications of statistical physics to complex systems. In September 2000 he has been appointed Assistant Professor in Statistical Physics of Living Matter and Complex Systems at the Institute of Theoretical Physics of the University of Lausanne, Switzerland. Since April 2010 he is Associate Professor at the Institute of Theoretical Physics of the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Mohammad Khaja NazeeruddinDr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. He joined as a Lecturer in Deccan College of Engineering and Technology, Osmania University in 1986, and subsequently, moved to Central Salt and Marine Chemicals Research Institute, Bhavnagar, as a Research Associate. He was awarded the Government of Indias fellowship in 1987 for study abroad. After one year postdoctoral stay with Prof. Graetzel at Swiss federal institute of technology Lausanne (E P F L), he joined the same institute as a Senior Scientist. His current research focuses on Dye-sensitized solar cells, Hydrogen production, Light-emitting diodes and Chemical sensors. He has published more than 380 peer-reviewed papers, ten book chapters, and inventor of 40 patents. The high impact of his work has been recognized with invitations to speak at over 80 international conferences, including the MRS Fall (USA, 2006) and Spring 2011 Meetings, GORDON conference (2014), and has been nominated to the OLLA International Scientific Advisory Board. He appeared in the ISI listing of most cited chemists, and has more than 33'500 citations with an h-index of 89. He is teaching "Functional Materials" course at EPFL, and Korea University; directing, and managing several industrial, national, and European Union projects on Hydrogen energy, Photovoltaics (DSC), and Organic Light Emitting Diodes. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor by the Korea University, Jochiwon, Korea (http://dses.korea.ac.kr/eng/sub01_06_2.htm) and Adjunct Professor by the King Abdulaziz University, Jeddah, Saudi Arabia. Philippe GilletPhilippe GILLET est entré à lEcole normale supérieure de la rue dUlm (Paris) pour y mener des études en sciences de la Terre. En 1983, il obtient un PhD en géophysique à luniversité de Paris VII et rejoint luniversité de Rennes I comme assistant. En 1988, titulaire dun doctorat dEtat, il devient professeur dans cette même université et la quitte en 1992 pour rejoindre Ecole normale supérieure de Lyon.
La formation des chaînes de montagnes, et des Alpes en particuliers, est lobjet de la première partie de sa carrière scientifique. En parallèle, il développe des techniques expérimentales (cellules à enclumes de diamants)qui permettent de simuler en laboratoire les conditions de pression et de température qui règnent au sein des planètes. Lobjectif de ces expériences est de comprendre de quels matériaux sont constituées les profondeurs inatteignables des planètes du système solaire.
En 1997, il commence à travailler sur la matière extraterrestre. Il participe à la description de météorites venant de Mars, de la Lune ou de planètes aujourdhui disparues et explique comment celles-ci ont été expulsées de leur planète dorigine par des chocs titanesques avant darriver sur Terre. Il a aussi participé au programme STARDUST de la NASA et contribué à lidentification de grains de comète ramenés sur Terre après avoir été capturés au voisinage de la comète Wild-II. Ces grains représentent les premiers minéraux de notre système solaire, formés il y a plus de 4,5 milliards dannées. Il a aussi travaillé sur les sujets suivants :
interactions entre bacteries et minéraux;
amorphisation sous pression;
techniques expérimentales: cellule à enclumes de diamant, spectroscopie Raman,diffraction des RX sur source synchrotron, microscopie électronique.
Philippe Gillet a aussi une activité de management de la science et de lenseignement. Il a ainsi dirigé lInstitut National des Sciences de lUnivers du CNRS (France), présidé le synchrotron français SOLEIL, lAgence Nationale de la Recherche française(2007) et lEcole normale supérieure de Lyon. Avant de rejoindre lEPFL il a été le directeur de cabinet du Ministre français de la Recherche et de lEnseignement Supérieur.
Quelques publications :
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
Nico de RooijNico de Rooij is Professor Emeritus of EPFL and previous Vice-President of CSEM SA. He was Professor of Microengineering at EPFL and Head of the Sensors, Actuators and Microsystems Laboratory (
SAMLAB
) from 2009 to 2016. At
CSEM SA
he was responsible for the EPFL CSEM coordination from 2012 to 2016. His research activities include the design, micro fabrication and application of miniaturized silicon based sensors, actuators, and microsystems. He authored and coauthored over 400 published
journal papers
in these areas.
He was Professor at the University of Neuchatel and Head of the Sensors, Actuators and Microsystems Laboratory (SAMLAB) from 1982 to 2008. Since October 1990 till October 1996 and again from October 2002 until June 2008, he has been the director of the Institute of Microtechnology of the University of Neuchatel (IMT UniNE). He lectured at the Swiss Federal Institute of Technology, Zurich (ETHZ), and since 1989, he has been a part-time professor at the Swiss Federal Institute of Technology, Lausanne (EPFL). He has been appointed Vice-President of the CSEM SA in February 2008 and headed the newly created Microsystems Technology Division of CSEM SA, from 2008 until 2012. He was Director of EPFL's Institute of Microengineering (EPFL STI IMT) from 2009 to 2012, following the transfer of IMT Uni-NE to EPFL.
Dr. de Rooij is a Fellow of the IEEE and Fellow of the Institute of Physics (UK). He recieved the IEEE
Jun-Ichi Nishizawa Gold Medal
, the Schlumberger Prize as well as the
MNE Fellow Award 2016
. He was awarded a Visiting Investigatorship Program (VIP) in MEMS/NEMS Systems by the
A*STAR Science and Engineering Council (SERC)
, Singapore, hosted by
SIMTech
, for the period 2005-2008.
Prof. de Rooij is Corresponding Member of the
Royal Netherlands Academy of Arts and Sciences
and Individual Member of the
Swiss Academy of Engineering Sciences
.
He has been serving on the Editorial Boards of the
IEEE/ASME Journal of Microelectromechanical Systems (IEEE JMEMS)
,
the IEEE proceedings
,
the Journal of Micromechanics and Microengineering, JM & M,
,
the Sensors and Actuators
,and
Sensors and Materials
. He was Member of the Information and Communication technology jury of the BBVA Foundation Frontiers of Knowledge Awards from 2009 to 2012.
Dr. de Rooij is (or was) Member of numerous international steering committees of conference series as well as
technical paper review panels including the steering committee of the International Conference on Solid-State
Sensors and Actuators and of Eurosensors. He acted as European Program Chairman of Transducers '87 and General Chairman of Transducers '89, Montreux, Switzerland.
He has supervised more than 70 Ph.D. students, who have successfully completed their
Ph.D. thesis.
He received his M.Sc. degree in physical chemistry from the State University of Utrecht, The Netherlands, in 1975, and a Ph.D. degree from Twente University of Technology, The Netherlands, in 1978. From 1978 to 1982, he worked at the Research and Development Department of Cordis Europa N.V., The Netherlands.
Emmanuel DenariéEmmanuel Denarié is a civil engineer, with a PhD in Materials Science. He worked for 3 years in a civil engineering company where he was in charge of the design of structures and the maintenance of bridges. He has 30 years’ experience on research and applications in the field of building materials, advanced concretes, and rehabilitation of reinforced concrete structures. He is since 2000 senior scientist and lecturer in the Laboratory for Maintenance and Safety of structures, at Ecole Polytechnique Fédérale de Lausanne (EPFL), in charge of research and development activities on the application of concretes and advanced cementitious materials to the improvement of existing and new structures. In 2013, under the lead of Emmanuel Denarié, in cooperation with CEREMA, Subdivision des Phares et Balises from Lorient, and Lafarge, a turret at sea (Le Cabon, Brittany, France) was reinforced by a cast on site 60 mm thick UHPFRC shell. The strain hardening mix was developed jointly with Lafarge. This successful application in extreme conditions of access and restraint of the substrate (thin ring geometry) opened the way to large-scale industrial applications of UHPFRC for the reinforcement of existing structures.