In microeconomics, the expenditure function gives the minimum amount of money an individual needs to spend to achieve some level of utility, given a utility function and the prices of the available goods.
Formally, if there is a utility function that describes preferences over n commodities, the expenditure function
says what amount of money is needed to achieve a utility if the n prices are given by the price vector .
This function is defined by
where
is the set of all bundles that give utility at least as good as .
Expressed equivalently, the individual minimizes expenditure subject to the minimal utility constraint that giving optimal quantities to consume of the various goods as as function of and the prices; then the expenditure function is
(Properties of the Expenditure Function) Suppose u is a continuous utility function representing a locally non-satiated preference relation o on Rn +. Then e(p, u) is
Homogeneous of degree one in p: for all and >0,
Continuous in and
Nondecreasing in and strictly increasing in provided
Concave in
If the utility function is strictly quasi-concave, there is the Shephard's lemma
Proof
(1) As in the above proposition, note that
(2) Continue on the domain :
(3) Let and suppose . Then , and . It follows immediately that .
For the second statement , suppose to the contrary that for some , Than, for some , , which contradicts the "no excess utility" conclusion of the previous proposition
(4)Let and suppose . Then, and , so .
(5)
The expenditure function is the inverse of the indirect utility function when the prices are kept constant. I.e, for every price vector and income level :
There is a duality relationship between expenditure function and utility function. If given a specific regular quasi-concave utility function, the corresponding price is homogeneous, and the utility is monotonically increasing expenditure function, conversely, the given price is homogeneous, and the utility is monotonically increasing expenditure function will generate the regular quasi-concave utility function.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En microéconomie, un consommateur de demande hicksienne est la demande d'un consommateur sur un ensemble de biens qui réduit au minimum leurs dépenses tout en offrant un niveau fixe d'utilité. La correspondance est une fonction, elle est appelée la fonction de demande hicksienne, ou fonction de demande de compensation. Elle est nommée d'après John Hicks: où h ( p, u) est la fonction de demande hicksienne ou le bénéfice des produits exigé au niveau de l'utilitaire et du niveau de prix p .
NOTOC In economics, a consumer's indirect utility function gives the consumer's maximal attainable utility when faced with a vector of goods prices and an amount of income . It reflects both the consumer's preferences and market conditions. This function is called indirect because consumers usually think about their preferences in terms of what they consume rather than prices.
En économie, l'utilité est une qualité d'un objet par laquelle est possible une mesure relative au bien-être ou de la satisfaction présente par la consommation, ou le profit trouvable d'un bien ou d'un nombre de services. Elle est liée mais distincte au besoin d'un consommateur. Ce concept est utilisé dans les fonctions d'utilité, fonctions d'utilité sociale, optimum au sens de Wilfredo Pareto, boîtes d'Edgeworth. C'est un concept central de l'économie du bien-être. À l'origine, la notion d'utilité est essentiellement liée à la prise de risque.