Principe de complémentaritéEn physique, le principe de complémentarité formulé par Niels Bohr en 1927 est un énoncé relevant de l'interprétation de la mécanique quantique qui vise à expliquer la dualité onde-corpuscule et le principe d'indétermination de Werner Heisenberg. Il consiste à dire que les comportements corpusculaires et ondulatoires qui cohabitent dans les phénomènes quantiques, ainsi que les paires de propriétés incompatibles de par le principe d'indétermination sont en fait des aspects complémentaires d'une même réalité.
Pseudo-télépathie quantiqueEn physique quantique et en théorie des jeux, la pseudo-télépathie quantique fait référence au fait que, dans certains jeux bayésiens à informations asymétriques, les joueurs qui ont accès à un système physique partagé dans un état quantique intriqué, et qui sont capables d'exécuter des stratégies qui dépendent des mesures effectuées sur le système physique intriqué, peuvent obtenir des gains moyens plus élevés à l'équilibre que ceux qui peuvent être obtenus dans n'importe quel équilibre de Nash à stratégie
Effet Zénon quantiquevignette|400x400px| Avec le nombre croissant de mesures, la fonction d'onde a tendance à rester dans sa forme initiale. Dans l'animation, une évolution libre dans le temps d'une fonction d'onde, représentée à gauche. Dans la partie centrale, elle est interrompue par des mesures de position occasionnelles qui localisent la fonction d'onde dans l'un des neuf secteurs. À droite, une série de mesures très fréquentes conduit à l'effet Zénon.
SinguletLa notion de « singulet » prend un sens différent selon qu'on l'utilise dans le domaine de la physique ou de la chimie. En physique théorique, un singulet peut faire référence à une représentation uni-dimensionnelle (par exemple une particule dont le spin disparaît). deux ou plusieurs particules corrélées de telle façon que le moment angulaire total de l'état soit égal à zéro. En physique atomique, les singulets sont fréquemment présentés comme l'une des deux façons de combiner le spin de deux électrons, l'autre étant le triplet.
Communication supraluminiqueLa communication supraluminique est un processus hypothétique au cours duquel de l'information serait envoyée à une vitesse supérieure à celle de la lumière dans le vide. Le consensus scientifique actuel rejette la possibilité d'une communication plus rapide que la lumière et cette dernière n'a été démontrée par aucune expérimentation. Elle est considérée impossible car elle impliquerait, d'après les invariances de Lorentz, la possibilité de . Cela engendrerait une panoplie de paradoxes temporels et contredirait la causalité.
Expérience d'AspectEn mécanique quantique, l'expérience d'Aspect est la première expérience montrant la violation des inégalités de Bell, établissant un résultat irréfutable en vue de la validation du phénomène d'intrication quantique et des hypothèses de non-localité. Elle apporte ainsi une réponse expérimentale au paradoxe EPR proposé une cinquantaine d'années plus tôt par Albert Einstein, Boris Podolsky et Nathan Rosen. Cette expérience a été réalisée par le physicien français Alain Aspect à l'Institut d'Optique à Orsay entre 1980 et 1982.
Histoires consistantesEn mécanique quantique, les histoires consistantes (également appelées histoires décohérentes ou histoires rationnelles) sont une tentative d'interprétation moderne de la mécanique quantique, généralisant l'interprétation conventionnelle de Copenhague et fournissant une interprétation naturelle de la cosmologie quantique. Elle repose sur un critère de consistance (cohérence logique) permettant l'attribution de probabilités à différentes histoires alternatives d'un système, probabilités respectant les règles de la probabilité classique tout en étant cohérentes avec l'équation de Schrödinger.
Quantum indeterminacyQuantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that Quantum indeterminacy can be quantitatively characterized by a probability distribution on the set of outcomes of measurements of an observable. The distribution is uniquely determined by the system state, and moreover quantum mechanics provides a recipe for calculating this probability distribution.
Quantum correlationIn quantum mechanics, quantum correlation is the expected value of the product of the alternative outcomes. In other words, it is the expected change in physical characteristics as one quantum system passes through an interaction site. In John Bell's 1964 paper that inspired the Bell test, it was assumed that the outcomes A and B could each only take one of two values, -1 or +1. It followed that the product, too, could only be -1 or +1, so that the average value of the product would be where, for example, N++ is the number of simultaneous instances ("coincidences") of the outcome +1 on both sides of the experiment.
Objective-collapse theoryObjective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory.